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Abstract

The purpose of this thesis is an in-depth examination of the Elliptic Curve Discrete

Logarithm Problem(ECDLP) including up-to-date techniques in attacking cryptosys-

tems dependent on the ECDLP. The thesis is presented as a how-to guide and included

are programs written in Pari/GP for various attacks. We then use the knowledge of

these attacks in an attempt to generate cryptographically strong elliptic curves.
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1 Introduction

Introduced to cryptography in 1985, elliptic curves are quickly being adapted for

cryptographic purposes. Elliptic curve cryptography is quickly becoming a leader in

the industry, and is challenging other cryptosystems such as RSA and DSA to become

the industrial standard; this is due to an increase in speed during implementation, the

use of less memory, and smaller key sizes. Another advantage of such a cryptosystem

lies in the difficulty of solving the Elliptic Curve Discrete Log Problem (ECDLP). If

an elliptic curve is chosen with some care, the ECDLP is believed to be infeasible,

even with today’s computational power. On the other hand, this obstacle has not

deterred those in their attempts to crack elliptic curve cryptosystems. A multitude

of attacks have been developed, tested, and analyzed when attacking the ECDLP.

For the most part the ECDLP has withstood all attempts; however, in some special

cases the problem is actually quite easy. It is simply these cases that must be avoided

when building such a cryptosystem.

Using elliptic curves presents a great advantage in a few areas. For instance,

compared to RSA cryptosystems, elliptic curve based systems require less memory;

for example, a key size of 4096 bits for RSA gives the same level of security as 313

bits in an elliptic curve system [5]. Also, using a PalmPilot, generating a 512-bit RSA
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key takes around 3.4 minutes, while generating an equivalent 163-bit ECC-DSA key

takes 0.597 seconds [87, 159]. Immediately we begin to see the advantages of using

elliptic curves, especially on a small hand-held devices with little computing power.

It is clear that this now gives us the advantage of setting up schemes that require

smaller chip sizes, use less memory, require less resources to run, require less power

consumption, etc; and can be placed in small electronic devices, such as smart cards

and cell phones.

Many elliptic curve cryptosystems take advantage of what is known as the ECDLP.

Analogous to the Discrete Logarithm Problem (DLP) over a finite field F×p , the

ECDLP is the following problem: given two points P and Q on an elliptic curve

E defined over a field Fq, where q is prime or a prime power, if P = [m]Q for some

m ∈ Z, determine m. Schemes and protocols such as the Deffie-Hellman key ex-

change, Massey-Omura encryption, El-Gamal public key encryption and El-Gamal

digital signatures and even the Elliptic Curve Digital Signature Algorithm(ECDSA),

all use the fact that attempting to solve the ECDLP is a difficult, if not intractable,

problem. In fact it is believed that the ECDLP is as difficult if not more so than

solving the DLP over Fp [5].

As mentioned although the ECDLP is thought to be an intractable problem, it

has not stopped people attempting to attack such a cryptosystem. Various attacks

have been devised, tested and analyzed by many leading mathematicians over the

years, in attempts to find weaknesses in elliptic curve cryptosystems. Some have

been partially successful, while others have not. The ECDLP has been shown to be

easily solved for the following situations:
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1. If #E(Fp)= p+ 1 (the supersingular case) then the ECDLP can be reduced to

the DLP on the multiplicative group of the finite field with pk elements. This

is practical if k is not too large.

2. If #E(Fp) = p (the anomalous case) then the ECDLP can be reduced to simple

addition in Fp, essentially by lifting the curve modulo p2.

3. If #E(Fp) is divisible by only small primes, then one can use the Pohlig-Hellman

method which solves the problem in time O(
√
p′), where p′ is the largest prime

divisor of E(Fp).

In each of these three cases the underlying curve can easily be modified so as to

thwart each attack. For example if we had a curve for which our point P had large

prime order, that is [m]P = O, for a large prime m, then the Pohlig-Hellman method

becomes impractical.

The purpose of this thesis is to provide a detailed examination of the leading

attacks against the ECDLP, and to use the knowledge of these attacks in an attempt

to generate cryptographically strong elliptic curves.
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2 Attacking the Discrete Logarithm Problem

Before diving immediately into the realm of elliptic curves, we first present a brief

treatment of the Discrete Logarithm Problem and the various attacks available, so

that:

1. the reader becomes familiar with the setup and attacks on cryptosystems.

2. the reader is familiar with these attacks for they will reappear, albeit briefly,

when discussing Pairing attacks on elliptic curves. These attacks attempt to

take the ECDLP and transform it to the DLP in an isomorphic group in an

abelian variety of higher dimension.

3. the reader is able to draw analogies between the attacks in the DLP setting and

the ECDLP setting.

4. the reader gains a better understanding of how certain attacks have failed to

translate to the elliptic curve setting. For instance, as we shall see, the most

powerful attack on the DLP, the Index Calculus fails to translate over to the

setting of elliptic curves.
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1 The Discrete Logarithm Problem

The security of many cryptosystems depends on the intractability of the discrete

logarithm problem. For instance one of the more famous public key cryptosystems,

El-Gamal encryption, relies heavily on the intractability of this problem. The follow-

ing is referred to as the DLP or even sometimes as the Generalized DLP.

Definition 2.1 Let G be a finite cyclic group of order n. Let α be a generator of G,

and β ∈ G. Determine the unique integer x, 0 ≤ x ≤ n− 1 such that αx = β.

In the specific setting we take G = Zp and attempt to solve the congruence αx ≡ β

mod p. It is this setting that is commonly referred to as the DLP, but either setting

will suffice for our purposes.

Attacks on the DLP can be divided into three main categories [62]:

1. algorithms that work in arbitrary groups, such as the exhaustive search and the

Baby-Step Giant-Step algorithm,

2. algorithms that work in arbitrary groups with special conditions present in the

group, like Pollard’s λ-Method, and

3. algorithms that work only in specific groups, such as the Index Calculus.

1.1 Exhaustive Search

As its name suggests, this attack involves simply computing powers of α until the

value of β is found. This attack is completely inefficient when dealing with concrete

cryptographic situations.
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1.2 Baby-Step, Giant-Step Algorithm

This attack uses a combination of computational power and memory storage to solve

the DLP. Let G be a cyclic group with generator α. Suppose that α has order n

and set m = d
√
n e. Observe that if β = αx, then using the euclidean algorithm

we can write x as follows: x = im + j, where 0 ≤ i, j < m. Thus we have that

β = αx = αim+j = αimαj, which implies that β(α−m)i = αj. To compute the discrete

logarithm, we begin by computing and storing the values (j, αj) for 0 ≤ j ≤ m. We

then compute β(α−m) and raise that to the exponent i for 0 ≤ i ≤ m− 1 and check

these values against the stored values of αj to find a match. When a match is found

we have solved the DLP and we have x = im+ j as required.

The drawbacks of this algorithm lie in the computation and formulation of the

table of pairs (j, αj). At each stage we are required to compute a power of α and

look in the table to see if it returns a match. If this is successful then the DLP has

been solved. Unfortunately, one has to store around O(
√
n) group elements, perform

around O(
√
n) multiplications to find the correct power of α, and in turn perform

O(
√
n) table look-ups [62]. As a consequence this algorithm has an expected running

time of O(
√
n), which makes it impractical for cryptographic purposes.

1.3 Pollard’s ρ-Method

This algorithm has a similar running time to the Baby-Step Giant-Step method above

yet requires less memory, an immediate advantage. Let G be a cyclic group of order

n, where n is prime. G is then partitioned into three subsets of roughly equal size,
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call these sets S1, S2 and S3. We then define a sequence of group elements, {xi}, as

follows: x0 = 1 and

xi+1 = f(xi)
def
=



xiβ if xi ∈ S1,

x2
i if xi ∈ S2,

xiα if xi ∈ S3,

for i ≥ 0. This in turn defines two sequences of integers {ai} and {bi} satisfying

xi = αaiβbi for i ≥ 0. The sequences {ai} and {bi} are defined as follows: set

a0 = 0 = b0 and for i ≥ 0,

ai+1 =



ai if xi ∈ S1,

2ai mod n if xi ∈ S2,

ai + 1 mod n if xi ∈ S3,

and

bi+1 =



bi + 1 mod n if xi ∈ S1,

2bi mod n if xi ∈ S2,

bi if xi ∈ S3.

We then begin with a pair (x1, x2) and iteratively compute pairs (xi, x2i) until we

find a pair of group elements such that xi = x2i for some i1. When such a pair is

found we then have the following relation: αaiβbi = αa2iβb2i . Thus βbi−b2i = αai−a2i .

Taking the logarithm here to the base α, we obtain the equation

(bi − b2i) logα β = ai − a2i mod n.

1This technique is commonly known as using Floyd’s Cycle Finding Algorithm, details of which
can be found in [38].
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Provided that bi 6≡ b2i mod n we can invert the quantity bi − b2i (recall that n here

was prime so that gcd(bi − b2i, n) = 1), and thus obtain a solution for logα β namely,

(bi − b2i)−1(ai − a2i) mod n.

Note that this algorithm is a randomized algorithm and has the potential, albeit

very small, to terminate without finding a solution. In the event that the algorithm

fails, we can run through the process a second time starting with new values for a0

and b0 in [1, n−1] [62]. Since this algorithm requires less storage then the Baby-Step

Giant-Step method it is preferable over the latter method; yet since this algorithm

has a similar expected running time, O(
√
n), this attack is inefficient for practical

purposes.

1.4 Pollard’s λ-Method

In [66] and [67] Pollard describes a method for computing the discrete log in a group

where we know a little more information than usual. This method is more commonly

referred to as Pollard’s Kangaroo Method, since the method was first described as

having a wild kangaroo W run through random values of αj, j ∈ [1, p−2] and a tame

kangaroo, T whose job it is to run through and set a trap for the wild kangaroo and

catch him. When the two kangaroos meet, the discrete logarithm is solved. This

setting will be made more precise below. Let G(= Zp) be a cyclic group of prime

order, α a generator for G and β ∈ G such that αx = β. Suppose further that we

know that x ∈ [a, b] ⊂ [0, p− 1] where the value l = b− a is small2.

2Suppose that b−a ≈ 2100 then
√

b− a ≈ 250, which is a fairly manageable quantity. This would
be a fair definition of small.
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Remaining true to the original setting, our tame kangaroo T will attempt to catch

the wild kangaroo W . To do this we must have a way to keep track of where they

are. We do this as follows. Let J = blog2(l)c, since l = b− a is a small quantity then

so is J . Let S = {20, 21, . . . , 2J−1} = {s(0), s(1), . . . , s(J−1)}. Each jump made by a

kangaroo will use a distance that is randomly selected from the set S. We need a way

to keep track of the distance traveled by each kangaroo. Let’s begin with our tame

kangaroo T . Let T begin his journey at a point that we know, set t0 = αb mod p.

We can then track its path

t(i+ 1) ≡ t(i)αs(t(i) mod J) mod p for i = 1, 2, 3, . . . (2.1)

Of course T cannot jump forever. Let T jump n steps and then stop. Discussion of

n will follow when we see what the wild kangaroo will do. After n jumps we record

the distance traveled by T as

d(n) =
n∑
i=0

s(t(i) mod J)

Using this expression for the distance traveled by T we can express (2.1) as

t(n) ≡ αb+d(n−1) mod p

Now we have to deal with the distance that W will travel. We can use the same

idea, except that W will start from an unknown point, namely w0 = αx; this unknown

starting point is why this kangaroo is deemed the wild kangaroo. Similar to above

the path traveled by W is

w(j + 1) ≡ w(j)αs(w(j) mod J) mod p for j = 1, 2, 3, . . . (2.2)

9



and its distance traveled is recorded as

D(j) =

j∑
k=0

s(w(k) mod J).

Hence we can express (2.2) as

w(i) ≡ αx+D(i−1) mod p.

Due to the birthday problem3, after approximately
√
l jumps a collision should occur.

When this happens we have some indices i, j such that t(i) = w(j) and from this

point onward t(s) = w(r) for all s ≥ i, r ≥ j. When a collision has occurred we

obtain the following relation:

αx+D(m−1) ≡ αb+d(n−1) mod p

Hence we’ve solved for the unknown quantity x, and the DLP, since

x = b+ d(n− 1)−D(m− 1).

Note that we are still unsure of how many jumps T should make. If we take n =
√
l

then the birthday problem tells us that the probability of a collision tends to 1

quickly if the number of steps exceeds
√
l, hence setting n to this quantity increases

the likelihood of a collision [56].

This of course makes the algorithm probabilistic. If the algorithm fails to yield

a collision after n steps, it can be re-initialized with a new starting value for the

wild kangaroo [56]. This algorithm has a much better running time since we are only

searching for a solution to the discrete log in the interval [a, b]. Hence the running

3See [56] for more details.
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time for the algorithm depends on the lengths of this interval, more precisely the

algorithm is expected to have a running time of O(
√
l) [67].

A speed up of this algorithm can also be obtained. Suppose that the algorithm is

set up on a parallel computing system with P processors. Then an application of the

algorithm has expected running time of O(
√
l
P

) [67], making this parallelized version

fairly efficient. Of course this all presupposes that knowledge of the interval to which

x belongs is known and is small.

1.5 The Pohlig-Hellman Method

The Pohlig-Hellman algorithm is an effective attack on the discrete logarithm in Fp,

for a prime p, provided that a factorization of p− 1 can easily be found, and that it

uses relatively small primes4. The setup is as follows.

Suppose that p is a prime number and α a generator for the cyclic group F×p .

Assume that β ∈ F×p is such that β = αx. We want to solve x = logα β. Assume

further that

p− 1 =
k∏
i=1

qrii

where the qi’s are prime numbers in the factorization of p − 1. The main idea here

is that we will solve a system of congruences modulo the qi’s, and then we will

reassemble, using the Chinese Remainder Theorem(CRT), a solution for the original

problem.

For the moment let’s fix choices q, r and we will work mod qr. Recall that we are

4Here small refers to the amount of digits in the prime number.
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searching for a solution to x = logα β. We can perform the following trick. Write x

as

x ≡ x0 + x1q + x2q
2 + x3q

3 + . . .+ xr−1q
r−1 mod qr for 0 ≤ xi ≤ q − 1. (2.3)

The important thing to notice here is that we can successively compute the xi’s. We

can then take this equation for x, multiply by the constant p−1
q

and obtain

x(
p− 1

q
) ≡ x0(

p− 1

q
) + x1(p− 1) + x2q(p− 1) + x3q

2(p− 1) + . . .+ xr−1q
r−2(p− 1)

or simply

x(
p− 1

q
) ≡ x0(

p− 1

q
) + (p− 1)m, for some m ∈ Z.

(Where the above congruences hold true modulo qr). Now that we have obtained

this, we can see what happens when we work with our generator α and our solution

β all modulo p.

Raising β to the exponent of p−1
q

, we get:

β
p−1

q ≡ (αx)
p−1

q ≡ αx0( p−1
q

)+(p−1)m ≡ αx0( p−1
q

) ≡ (α
p−1

q )x0 mod p

It is now possible to run through a list of stored values in an attempt to find a match

for x0. The stored values are obtained by setting c ≡ g
p−1

q mod p and computing

cj mod p where 0 ≤ j ≤ q − 1. The CRT implies that one and only one value will

be congruent to β
p−1

q . When a match is found we are able to solve for x0, namely

j = x0. Once we have solved for x0 we can perform a similar trick to solve for x1,

this time we multiply (2.3) by the quantity p−1
q2

to obtain

x(
p− 1

q2
) ≡ x0(

p− 1

q2
) + x1(

p− 1

q
) + (p− 1)m1, for some m1 ∈ Z. (2.4)
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Unfortunately we cannot immediately raise β to this exponent; we first need to shift

it somehow to compensate for the extra power of q that we have on the left hand side

of (2.4). To do this, we set β1 = β · α−x0 . Thus we have that

β
p−1

q2

1 ≡ (αx · α−x0)
p−1

q2

≡ (αq(x1+x2q+...))
p−1

q2 ≡ α
p−1

q
(x1+x2q+x3q2+...)

≡ α( p−1
q

)x1+(p−1)m1 ≡ α( p−1
q

)x1 mod p

and again we can look in our table of precomputed values and determine x1. This

is then repeated until all the xi’s are known and for every prime qi appearing in the

factorization of p − 1. A final application of the CRT applied with each qi gives us

the final value of x allowing us to solve the DLP in this case.

There are two issues that we should be aware of for this attack. The first is that

we are assuming that p− 1 can be factored efficiently and that it contains only small

primes in its factorization. The second issue lies in the precomputation of the cj

values. Since the p−1 contains only small primes, the values of the qi’s are small and

hence so are the values of the cj’s. Since these values are small, they can be efficiently

computed, and require relatively small storage for each list. The expected running

time for this algorithm is O(
∑k

i=1 ri(log2(p− 1) +
√
qi)) [63], or equivalently O(

√
q′i)

where q′i is the largest prime factor of p− 1. To avoid this attack in its entirety, one

can chose the value of p carefully so that p− 1 has a large prime factor.

1.6 The Index Calculus

The Index Calculus is the most powerful attack against the DLP [62]. Unfortunately

it does not always apply, but when it does it results in a subexponential running
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time. Until now all running times have been exponential in the order of the input,

making them impractical.

If we assume that a solution to the DLP exists then the problem can be reduced

to solving the following:

k = logα β

Here’s how the index calculus works. First we chose a Factor Basis

F r = {2, 3, 5, 7, 11, . . . , pr} made up of primes for some r which will be chosen later.

We then compute the semi-group generated by F r, ie. 〈F r〉5.

The next step consists of computing powers of α and lifting each of these values

from Fp to Z.

αj ≡ aj mod p 1 ≤ aj < p

Each aj is then checked against 〈F r〉. If aj ∈ 〈F r〉, we record the value

aj =
r∏
i=1

p
ei(j)
i (2.5)

Notice that since aj = αj ∈ F×p , and F×p has order p− 1, each relation in (2.5) gives

a linear equation

j ≡
r∑
i=1

ei(j) logα(pi) mod p− 1 (2.6)

We compute powers of α until we obtain r independent linear relations of the form

(2.6). We then have r equations with r unknowns, logα(p1), . . . , logα(pr). This is

where choosing the proper value for r comes into play. It should be chosen so as to

include the complete factorization of a number a. This is a drawback to this method

of trying to solve the DLP using the index calculus.

5A semi-group is a set with a binary operation such that multiplication is associative.
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The final step is to compute and lift the quantities βαi, 1 ≤ i ≤ r to Z as before:

ie. we compute αiβ ≡ bi mod p 1 ≤ bi < p

We do this until we find a single value of i for which bi ∈ 〈F r〉, say

bi =
r∏
j=1

p
fj

j .

Since bi = αiβ ∈ F×p we have that

i+ logα β ≡
r∑
j=1

fi logα(pi) mod p− 1

We then have the value of logα β. Thus we have solved the DLP.

The main drawback of this algorithm lies in the choice of the factor base. If the

factor base is not chosen properly then there is a possibility that we could fail to

obtain enough linear relations to be able to solve the problem. If we chose too many

primes to use in our factor base then we obtain too many relations, in which case it

may also not be possible to solve the problem [62]. This attack also assumes that we

are able to factor group elements into products of primes, a process that cannot be

performed in all groups.

The Index Calculus can be used in both Zp and in F2m . In the latter field, the

factor base is chosen to consist of all irreducible polynomials of degree at most some

prescribed bound n ≤ m− 1 [62]. Again, just as in the case of choosing the number

of primes in a factor basis in the setting of Zp, choosing a proper bound n on the

degree of the irreducible polynomials is a drawback of this attack. With properly

chosen factor bases in either situation the expected running time for this algorithm
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is

Lq[
1

2
, c] = O(exp((c+ o(1))(log2 q)

1
2 (log2 log2 q)

1
2 ))

where q = p or 2m, and c > 0 is a constant [62]. This is a subexponential running

time. This is the first expected subexponential running algorithm that we have

encountered.

1.7 Conclusions

The following table summarizes our results thus far.

Attack Expected Running Time

Exhaustive Search O(n)

BSGS O(
√
n)

ρ-method O(
√
n)

λ-method O(
√
l)

Pohlig-Hellman O(
∑k

i=1 ri(log2(p− 1) +
√
qi)) = O(

√
q′i)

Index Calculus Lq[
1
2
, c]

Table 2.1: Expected Running Times of the Attacks on the DLP

The Index Calculus offers the only subexponential running time in the most gen-

eral setting where no extra information about the structure of the underlying group

is known. It is currently the most powerful attack against the DLP when it can be

used.

As mentioned at the beginning of this chapter, it is important to be aware of these

attacks since they will be of use when we discuss Pairing attacks on elliptic curves
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in IV.3.2. To put this in context, several of these elliptic curve attacks, such as the

MOV and the Frey-Rück attacks, attempt to reduce an instance of the ECDLP to

an instance of the DLP in an isomorphic group. Depending on the structure of the

group, one of the methods discussed in this chapter can be used to solve the DLP,

hence solving the given instance of the ECDLP.
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3 Elliptic Curves and Other Essentials

1 What is an Elliptic Curve?

There are several ways to introduce the subject of elliptic curves. One approach is

from the realm of complex analysis. One could build a lengthy theory on Weierstrass

℘-functions, and realize that an elliptic curve is nothing more than an torus in the

complex plane6. A second method would be to develop the theory of curves and

varieties. Once this has been done, we then appeal to the Riemann Roch theorem to

not only prove the existence of elliptic curves, but the Riemann Roch theorem can

also be used to prove the group law, which we will see below7. Since we want to begin

using elliptic curves for cryptosystems we will assume one of the above settings and

begin by introducing topics and definitions which we will need throughout the rest

of this document8.

6See [2] and [78] for these details.
7These details can be found in [2] and [77].
8Other excellent sources of material in this introductory chapter are [5], [38], [81] and [87].
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1.1 Definitions

An elliptic curve E defined over a field K is the locus of points satisfying an equation

of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.1)

where ai ∈ K for all i. To this equation we can associate several quantities which

each have their own role in the study of elliptic curves.

The discriminant of an elliptic curve E, denoted as ∆, is the quantity

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

where

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

We also define a quantity known as the j-invariant of a curve. This quantity

will come in useful later when we discuss the method of Complex Multiplication

and isomorphisms of elliptic curves in Chapter V. The j-invariant is the quantity

(d2
2 − 24d4)

3/∆. This quantity completely classifies the isomorphism classes of E,

since two elliptic curves are isomorphic iff their j-invariants are equal [5].

The equation in (3.1) is known as the general Weierstrass equation. If the charac-

teristic of K is not equal to 2 or 3 we can perform a linear transformation to obtain

a new form of (3.1). One can find the explicit details of this transformation in either
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[38] or [77]. The net result of this transformation is that we reduce to an equation of

the form

y2 = x3 + Ax+B. (3.2)

This equation is the most common form that we will see throughout this document.

It is not however the only one. Many implementations of elliptic curve cryptosystems

take place over F2 or an extension field F2n for some n ∈ Z. In the case that the

characteristic of the field is 2, then an alternate linear change of variables can be

made to obtain an equation of the form

y2 + xy = x3 + a2x
2 + a6. (3.3)

1.2 The Group Law

Let E be an elliptic curve over a field K, with char(K) 6= 2, 3. In this section we

define, first geometrically and then algebraically, the group law on an elliptic curve.

One approach to defining the group law on an elliptic curve is to do so in projective

space, and then to reduce to the affine case by taking the point at infinity to be the

point [0 : 1 : 0]9. Instead we take this setup for granted and begin to define the

group law in the affine setting, denoting the point at infinity as O. The group law

can then be defined geometrically. Suppose P1 and P2 are two points on an elliptic

curve and we wish to determine P1 ⊕ P2. We connect the points P1 and P2 with a

line l. This line l will intersect the curve at a third point, which we will denote P ′
3.

We then connect P ′
3 with the point at infinity, which will simply be a vertical line

9This treatment can be found in [81]
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in this case, with the line l′. The line l′ will then intersect the curve E in a third

point as well. It is this point that we will denote as P1 ⊕ P2, the sum of P1 and P2

on E. Later, we will drop the ⊕ notation in favour of + where there should be no

confusion. From this type of geometric construction we can immediately see how to

define things algebraically.

Theorem 3.1 (The Group Law) Let E be an elliptic curve over K with char(K) 6=

2, 3, with defining equation E : y2 = x3 +Ax+B. Let P1 = (x1, y1) and P2 = (x2, y2)

be points on E such that P1, P2 6= O. We define P1 + P2 = P3 = (x3, y3) as follows.

1. If x1 6= x2 then x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1 where m = y2−y1
x2−x1

.

2. If x1 = x2 but y1 6= y2, then P1 + P2 = O

3. If P1 = P2 and y1 6= 0, then x3 = m2 − 2x1, y3 = m(x1 − x3) − y1 where

m =
3x2

1+A

2y1
.

4. if P1 = P2 and y1 = 0 then P1 + P2 = O

Notice that we did not take into account that P1 or P2 could in fact be the point

at infinity here. Doing so results in several special cases which we omit but can be

found in a variety of sources including [5], [38], [77] and [87]. We can also define the

group law algebraically over fields of characteristic 2 and 3; however we do not do it

here. Excellent sources for these definitions are [5], [38] and [77, Appendix A].

Regardless of the field of definition, and including all special cases for points on

E, we now have a group which satisfies the following properties,

Theorem 3.2 The addition law defined above on an elliptic curve E gives E the

structure of an Abelian Group. We will denote the identity element as O, and the

inverse of point P as −P .
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Proof : The proof of this theorem can be approached two different ways. We can

either give a geometric proof, since the group law was defined as such at the outset,

or we can prove these statements algebraically. In either case the group axioms are

all easily checked, the only difficult axiom is associativity. Normally the way that one

proves associativity is with an argument in projective space using Bézout’s theorem.

The statement about Bézout’s theorem is as follows and a proof can be found in [37].

Theorem 3.3 (Bézout’s Theorem) Let C1 and C2 be two projective curves defined

over C of degrees m and n respectively which share common component. Then the

sum of the intersection numbers10, counting multiplicities, at the point of intersection

P is mn.

With Bézout’s theorem in hand we observe that if we constructed (P1 +P2)+P3 and

P1 + (P2 + P3) geometrically, this gives us the conditions to satisfy the statement of

the theorem, thus we have two projective conics intersecting in eight points, hence

the ninth point must also coincide and we have that (P1 +P2)+P3 = P1 +(P2 +P3),

and thus the group law is associative. 2

As mentioned in the outset of this chapter, one could prove the group law using

the Riemann Roch theorem. We invite and encourage the interested reader to prove

the above theorem using the algebraic relations for the group law.

10see [37] for the definition of intersection number
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1.3 Elliptic Curves Over Finite Fields

The above section is a general construction; the group law applies to elliptic curves

over all fields. Since we are concerned with cryptographic applications, we will pri-

marily deal with elliptic curves over finite fields. We still make the same convention

that O is the point at infinity and is the identity element for our groups. When the

theory of elliptic curves over Q is fully developed, we can easily translate all con-

structions to a finite field Fq, for some prime q or q = pn for some n ∈ Z. Theorems

and constructions valid for elliptic curves over Q remain true over Fq by virtue of the

following theorem.

Theorem 3.4 (Reduction Modulo p) Let E be a non-singular elliptic curve over

Q with ∆ 6= 0. Let Φ ⊆ E(Q) be the subgroup of all points of finite order. Then for

any prime p with p - 2∆, the map

Φ → E(Fp)

P 7→ P̃ =


(x̃, ỹ) if P = (x, y)

Õ if P = O

is an isomorphism of Φ and a subgroup of E(Fp).

Of course if we go back and examine the group law we have to be careful with

the denominators to make sure we don’t divide by zero, that is, where x2 − x1,

say is a multiple p. There are a few more cases to consider, but we can develop

corresponding formulas to perform arithmetic on the curve E(Fp). There are many

sources that discuss finite field arithmetic on elliptic curves. Two excellent sources
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are [5] and [38], both of which give detailed accounts and present algorithms about

fast arithmetic in finite fields, and especially in the case where char(K) = 2.

There are a few additional results that should also be mentioned here. The first

will be used substantially throughout this document, and will lead us into the next

section.

Theorem 3.5 (The Hasse-Weil Theorem) Let C be a non-singular curve of genus

g defined over a finite field Fq. Then the number of points on C is q + 1 + ε, where

|ε| ≤ 2g
√
q.

An elliptic curve E is a curve of genus g = 1, which reduces the above relation to the

following:

−2
√
q ≤ #E(Fq)− q − 1 ≤ 2

√
q

This theorem is fairly significant, since we will be able to at least estimate the number

of points on E(Fq). In the next section, we will see that we can actually calculate the

number of points explicitly. The estimation will come into play again in Chapter V

when we look at generating cryptographically strong elliptic curves. Algorithms for

generating curves generally estimate the number of points on E so as to avoid some

of the more well known attacks on elliptic curves(which we will encounter in Chapter

IV).

The following results will appear again when we talk about Schoof’s algorithm in

the following section and Pairing attacks IV.3.2, and in particular when we discuss

the MOV attack.
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Definition 3.1 Let Fq be a finite field with algebraic closure Fq. The map

ϕq : Fq → Fq

x 7→ xq

is called the Frobenius endomorphism. ϕq acts on points on E(Fq) as ϕq(x, y) =

(xq, yq) and ϕq(O) = O.

Along with this definition comes the following theorem, which will be used several

times throughout this thesis, whose proof can be found in [87].

Theorem 3.6 Let E be an elliptic curve defined over Fq. Let a = q+ 1−#E(Fq) =

q + 1− deg(ϕq − 1) then

ϕ2
q − aϕq + q = 0

as endomorphisms of E. Furthermore, a is the unique integer such that this equation

is satisfied and a ≡ Trace((ϕq)m) mod m for all m with gcd(m, q) = 1.

Finally, we discuss an important family of mappings between elliptic curves. These

mappings are defined over arbitrary fields K and not simply Fq. In particular they

will help us extend the GHS attack which will be looked at in the next chapter.

Definition 3.2 Let E1 and E2 be two elliptic curves defined over K. An isogeny

from E1 to E2 is a morphism φ : E1 → E2 such that φ(O) = O. In particular

#E1 = #E2.
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2 Schoof’s Algorithm

The purpose of this section is to introduce and give a description of Schoof’s algorithm

for counting the number of points on an elliptic curve, given in Weierstrass form, over

the finite field Fp for large primes p. Determining the order of the group will be an

essential tool when attempting to generate cryptographically strong elliptic curves.

Schoof presented his original findings in his 1985 paper [69]. In this paper he was

able to show that the algorithm runs in polynomial time and takes at most O
(
log9 p

)
bit operations to complete.

Let ϕp be the pth power Frobenius endomorphism as defined in Definition 3.1. It

can be shown that ϕp maps points on E to points on E, and that it respects the

group law. Thus ϕp is a group endomorphism of E over Fp. Let the trace of the

Frobenius endomorphism be t. Then the following equation is satisfied:

ϕ2
p − [t]ϕp + [p] = O. (3.4)

Thus, for any point P on E we have the following:

(xp
2
, yp

2
)− [t](xp, yp) + [p](x, y) = O

Notice here that the subtraction and addition operations are curve operations. Thanks

to Hasse, we have a bound on the value of the trace of ϕp, |t| ≤ 2
√
p. At the heart

of Schoof’s algorithm lies a calculation for the value of t. We will come back to this

shortly.

For non-negative integers m, we define the set of m-torsion points of E, denoted

E[m], as follows;
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E[m] = {P ∈ E(Fp) : [m]P = O}.

From the algebraic expressions of the group law given above, we can see that the

coordinates of the sum P1 +P2 of two points on the curve are rational functions of P1

and P2 [5, 39]. Thus the multiplication by m map (x, y) 7→ [m](x, y) can be expressed

in terms of rational functions in x and y. We then have the following lemma.

Lemma 3.1 Let E be an elliptic curve defined over the field Fp, and let m ∈ Z,m ≥

2. There exists polynomials ψm ∈ E(Fp) [x, y] such that, for P = (x, y) ∈ E(Fp) with

[m]P 6= O we have

[m]P=

(
x− ψm−1(x,y)ψm+1(x,y)

ψ2
m(x,y)

,
ψm+2(x,y)ψ2

m−1(x,y)−ψm−2(x,y)ψ2
m+1(x,y)

4yψ3
m(x,y)

)
.

The polynomial ψm(x, y) is called the mth division polynomial of the curve E. These

polynomials play a central role in Schoof’s algorithm. Below are explicit recursive

formulas for ψm. The mth division polynomial is defined as follows:

ψ0(x, y) = 0, ψ1(x, y) = 1, ψ2(x, y) = 2y

ψ3(x, y) = 3x4 + 6ax2 + 12bx− a2,

ψ4(x, y) = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m(x, y) = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)/2y, (m > 2)

ψ2m+1(x, y) = ψm+2ψ
3
m − ψ3

m+1ψm−1 (m ≥ 2)

Notice that from these we may define another set of polynomials. This time they

will be polynomials in one variable, but they depend on the definitions of the division

polynomials. We define fm ∈ Fp[x] as follows. Eliminate all y2-terms in ψm using

the equation defining the curve E. The resulting polynomial, ψ′(x, y), is in either

E(Fp)[x] or yE(Fp)[x]. Define fm(x) = ψ′(x, y) if m is odd, and fm(x) = ψ′(x, y)/y if
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m is even. Defining these polynomials will help with certain calculations during the

algorithm. Before we get into the algorithm we present one more theorem that will

help us during its description.

Theorem 3.7 : Let P be a point in E(Fp)\{O}, and let m ≥ 1. Then P ∈ E[m] iff

ψm(P ) = 0.

Notice that this theorem can also be stated in terms of the polynomials fm we defined

earlier; see [5, 41].

For a prime s 6= p we have a map which relates the Frobenius endomorphism to

endomorphisms on E[s] under the Galois action of Gal(Fp\Fp).

EndFpE → EndGal(Fp\Fp)E[s] (3.5)

In essence what this is saying is that we can view the Frobenius ϕp, as a map invari-

ant under the Galois action that takes torsion elements to torsion elements11. This

property of ϕp allows us to do the following: if we let φs denote the image of ϕp on

the right side in (3.5), then by (3.4) we have the following relation holding on E[s]:

φ2
s − tφs + p = 0 (3.6)

However, if we suppose that the equation

(φ2
s − t′φs + p)P = O (3.7)

holds for each P ∈ E[s], and some t′ ∈ Z, then using (3.7) it can be shown that

(t′ − t)φsP = O for all P ∈ E[s]. Since φs is invertible we get that t ≡ t′ mod s.

11For greater details as to why this is so see [5, 46].
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Therefore we may compute the trace of the Frobenius mod s by checking to see which

relations hold in equation (3.7) over E[s] [69]. This allows us to compute the order

for each prime s 6= p and then reassemble the order of E(Fp) using the CRT.

We are now ready to present the steps in the algorithm. Let E be an elliptic curve

over Fp, where char(Fp) 6= 2, 3. The case where the characteristic of the field is 2 or

3 is handled in a similar manner, but the definitions above must be slightly altered

to take care of division by zero. These cases are explained in [5]. For the time being

we shall not concern ourselves with these cases.

To compute #E(Fp), we compute the trace of the Frobenius endomorphism. Since

we have a bound on t, we can compute the trace by computing t mod l for sufficiently

small prime numbers l. If we compute t mod l for l = 3, 5, 7, . . . , L such that

∏
l 6=L
l 6=2,p

l > 4
√
p (3.8)

we can determine t using the CRT. We can compute t mod l by checking which

relations hold in (3.7). That is for a given element τ ∈ Z/lZ we check to see if

φ2
l + p = τφl (3.9)

holds true on E[l]. To perform these computations we will use the division polyno-

mials. If P = (x, y) 6= O ∈ E[l], then by Theorem 3.7, we have that the equation

(3.9) holds iff
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(xp
2

, yp
2

)+

(
x− ψp−1ψp+1

ψ2
p

,
ψp+2ψ

2
p−1 − ψp−2ψ

2
p+1

4yψ3
p

)

=


O if τ ≡ 0 mod l,(
xp−

(
ψτ−1ψτ+1

ψ2
τ

)p
,

(
ψτ+2ψ2

τ−1−ψτ−2ψτ+12

4yψ3
τ

)p)
, otherwise.

Then by Lemma 3.1, the point P ∈ E[l] iff ψl = 0 or equivalently if fl = 0. Using

the equation for E and the formulas for the group law we can reduce this to checking

which relations hold over polynomials of the form H1(x) = 0 and H2(x) = 0, for

some polynomials in Fp[x]. We can do this since −P has the same x coordinate as

P . Then for every τ ∈ Z/lZ we check H1(x), H2(x) ≡ 0 mod fl, until we encounter a

value of τ for which (3.9) holds. When this happens we have found a value for which

t ≡ τ mod l. Now we present the steps of Schoof’s algorithm.

Here are the Steps needed to compute #E(Fp).

1. First we compute L, for which equation (3.8) holds. At this time we also compile

a list of the polynomials fm for m = 1, 2, . . . , L.

2. In this step we compute t mod l for every prime l ≤ L. First we test if there is

a nonzero point P ∈ E[l] for which φ2
lP = ±kP holds. Here k ≡ p mod l, and

1 ≤ k < l. So we have to test if the following holds true;

xp
2

= x− fk−1(x)fk+1(x)

f2
k (x)(x3+ax+b)

,when k is even

xp
2

= x− fk−1(x)fk+1(x)(x3+ax+b)

f2
k

, when k is odd

Note that the denominators do not vanish on E[l], so that φ2
l = ±kP iff
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(xp
2 − x)f 2

k (x)(x
3 + ax+ b) + fk−1(x)fk+1(x) = 0 for even k

(xp
2 − x)f 2

k (x) + fk−1(x)fk+1(x)(x
3 + ax+ b) = 0 for odd k

and we can test if a point P exists in E[l] by computing the gcd of the above

polynomials with the polynomials fl. If the gcd 6= 1 then we have the existence

of such a point. Otherwise if the gcd is 1, we have that τ 6= 0 in (3.9). We now

arrive at two cases:

Case 1: This is the case in which there exists some nonzero point P ∈ E[l] with

φ2
lP = −pP . If this is the case, then by (5), we have that tφlP = O. Since

we have that φlP 6= O, then t ≡ 0 mod l. If it is the case that φ2
lP = pP ,

then again by (3.7) we have that (2p− tφl)P = O and that φlP = 2p
t
P . From

this we find that t2 ≡ 4p mod l. Now, let w ∈ Z, with 0 < w < l, denote a

square root of p mod l. We can find such a w by simple trial and error. Since

(φl − 1
2
t2) = 0, the eigenvalues of φl acting on E[l] are w or −w, say. Now we

simply test to see if either φlP = ±wP holds. In the first case we have that

t ≡ 2w mod l, otherwise we get t ≡ −2w mod l. So we compute the gcd of the

following polynomials to check if the gcd is 1.

gcd(4(x3 + ax+ b)
p−1
2 f 3

w(x)− fw+2(x)f
2
w−1(x) + fw−2(x)f

2
w+1(x), fl(x))

gcd(4(x3 + ax+ b)
p+3
2 f 3

w(x)− fw+2(x)f
2
w−1(x) + fw−2(x)f

2
w+1(x), fl(x))

The first case corresponds to w being odd, while the second case is for even w.

When the gcd is 1, then we have t ≡ −2w mod l for odd w, and t ≡ 2w mod l

for even w. In every case we have a solution for t, thus its value can be recovered
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for step 3, which is explained below.

Case 2: In the case where φ2
lP 6= ±pP for any P ∈ E[l], then we test which of

the relations 3.9 for τ ∈ Z/lZ×. Then for P = (x, y) and k ≡ p mod l we have

that

φ2
lP+pP =

(
−xp2 − x+

ψk−1ψk+1

ψ2
k

+ λ2,−yp2 − λ
(
−2xp

2 − x+
ψk−1ψk+1

ψ2
k

+ λ2

))
where

λ =
ψk+2ψ

2
k−1−ψk−2ψ

2
k+1−4yp2+1ψ3

k

4ψky((x−xp)ψ2
k−ψk−1ψk+1)

.

Notice that the denominator of λ does not vanish over E[l] since ψk has no

zeros on E[l]. So we now let τ ∈ Z with 0 < τ < l; as a result we now get the

following.

τφlP =
(
xp −

(
ψτ+1ψτ−1

ψ2
τ

)p
,
(
ψτ+2ψ2

τ−1−ψτ−2ψ2
τ+1

4yψ3
τ

)p)
In a completely similar way to what was presented in Case 1, we can now test

which of the relations hold for equation (3.9) for τ = 1, 2, · · · , l − 1. These

computations involve evaluating polynomials modulo fl(x), and testing to see

if they are zero modfl(x). This then completes the description of step 2 of the

algorithm.

3. The third and final step of the algorithm consists of recovering t using the CRT

and the values of t mod l. Compute #E(Fp) = p+ 1− t.

It is clear that step 2 is the most time consuming step in algorithm. In his original

analysis, Schoof was able to show that this is indeed the truth, and that step 2 takes at
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most O(log9 p) steps to complete, so that it dominates the calculation of #E(Fp). It

is also clear that a lot of the difficulty will lie in computing the gcd of the polynomials

ψm and fm.

Since 1985, Schoof’s algorithm has been improved upon by Atkin and Elkies,

effectively reducing the expected running time. Step 2 of the algorithm has been

refined to include variations of the step by computing within the kernel of an isogeny

of degree l, and computing a factor of fl of degree (l − 1)/2. Atkin gave a sort and

match method used for ”bad primes” l [13]. These improvements have since been

incorporated in the algorithm, and it is now known as the SEA algorithm, in honour

of all three. But many others have continued to refine step 2 of the original, and

even the SEA algorithm, in order to develop faster methods of computing #E(Fp).

Nevertheless, we now have a way of determining #E(Fp) when required.

Example: We present a small example of how to calculate #E(Fq). This example

is due to Washington in [87].

Let E be the elliptic curve over F19 defined by the equation y2 = x3 +2x+1. Let

#E(F19) = 19 + 1− a, our task is to determine a.

Since 4
√

19 < 30 we see that we simply need to compute a mod l for l = 2, 3, 5.

For l = 2: Notice that we did not include l = 2 in the above algorithm. This case

can be handle with a simple argument. If x3 + 2x + 1 has a root in e ∈ F19, then

(e, 0) ∈ E[2], and so #E(F19) has even order and thus a ≡ 0 mod 2. To determine if

x3+2x+1 has a root in F19 we could just simply try all possible values in F19, instead

we make use of some theory of polynomials over finite fields. The roots of x19−x are

exactly the elements in F19 [16]. Thus we compute gcd(x19 − x, x3 + 2x + 1), if this
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is one there are no roots for x3 + 2x + 1 and thus a ≡ 1 mod 2. Indeed this is the

case, hence a ≡ 1 mod 2.

For l = 3: From Schoof’s algorithm we see that to determine a mod 3 we have

to determine whether

(x361, y361) + (x, y) = ±(x19, y19)

for (x, y) ∈ E[3].

We compute the x-coordinate of (x361, y361)+(x, y) and substitute in the equation

for E to obtain

(x3 + 2x+ 1)

(
(x3 + 2x+ 1)180 − 1

x361 − x

)2

−x361 − x

We now need to reduce this modulo ψ3, the third division polynomial defined in

the previous section. When we do this we realize that we need to compute the

multiplicative inverse of x361− x mod ψ3. However, gcd(x361− x, ψ3) = x− 8 so the

multiplicative inverse does not exist. On the other hand we notice that this means

x = 8 is a root of ψ3 and so the point (8, 4) ∈ E(F19) and has order three. Thus we

have that #E(F19) ≡ 0 mod 3, and thus a ≡ 2 mod 3.

For l = 5: Here we need to determine

(x361, y361) + (x,−y) = ±2(x19, y19)

where [19](x, y) = [−1](x, y) = (x,−y) ∈ E[5], hence the middle term in the above

equation. Again as above, computing the x-coordinate we get

(
y361 + y

x361 − x

)
−x361 − x ≡

(
3x38 + 2

2y19

)
−2x19 mod ψ5.
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Substituting x3+2x+1 for y2 and reducing ψ5 we can determine that a ≡ ±2 mod 5.

Now we need to determine the y-coordinate so we may determine the sign on a. The

y-coordinate of (x361, y361) + (x,−y) can be shown to be

y1 = y(9x11 + 13x10 + 15x9 + 15x7 + 18x6 + 17x5 + 8x4 + 12x3 + 8x+ 6) mod ψ5

while the y-coordinate of 2(x19, y19) is

y2 = y(13x10 + 15x9 + 16x8 + 13x7 + 8x6 + 6x5 + 17x4 + 18x3 + 8x+ 18) mod ψ5.

A computation of (y1 + y19
2 /y) mod ψ5 yields zero, which tells us that

(x361, y361) + (x,−y) = −2(x19, y19)

and so a ≡ −2 mod 5.

Thus we are left with solving the system of congruence

a ≡ 1 mod 2

a ≡ 2 mod 3

a ≡ 3 mod 5

which in turn yields the solution a ≡ 23 mod 30. From the Hasse-Weil Theorem

we know that |a| < 2
√

19 < 9, thus a = −7 and hence #E(F19) = 19 + 1 + 7 = 27 as

required.

3 Divisors and Pairings

3.1 Divisors

In this section we present a treatment of divisors of curves. This section contains

the necessary background for Pairing attacks on the ECDLP which we examine in
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IV.3.2. The theorems provided in this section come from the standard sources on the

subject [77] and [87].

Definition 3.3 The divisor group of a curve E, written Div(E), is the free abelian

group generated by the points of E. A divisor is then a formal sum

D =
∑
P∈E

nP (P )

with nP ∈ Z and nP = 0 for all but a finitely many P ∈ E. The degree of a divisor

D is defined as

deg(D) =
∑
P∈E

nP .

We also define the subgroup of divisors of degree zero, Div0(E), as

Div0(E) = {D ∈ Div(E) | deg D = 0}.

Definition 3.4 [77] Let E be a non-singular(except possibly at the point at infinity)

elliptic curve and P a non-singular point on E. The ring K[E]P is a discrete valuation

ring, with valuation

ordP : K[E]P → N ∪ {∞}

ordP (f) = max{d ∈ N | f ∈Md
P}

where MP is the maximal ideal of K[E]P . We can extend this definition to the

function field K(E) using ordP (f/g) = ordP (f) − ordP (g). This of course extends

our original range of our ordP operator to Z ∪ {∞}.

This now leads to the following definition.
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Definition 3.5 The order of a function f at the point P is ordP (f). If ordP (f) > 0

then f has a zero at P , while if ordP (f) < 0 then f has a pole at P .

We can now associate to f a divisor.

Definition 3.6 The divisor of a function, denoted div(f), is given by the following

div(f) =
∑
P∈E

ordP (f)(P )

The above construction is a result of the following homomorphism

div : K(E)× → Div(E)

f 7→
∑
P∈E

ordP (f)(P )

This then gives rise to an important class of divisors D in the divisor group

Div(E), those that can be associated with a function f .

Definition 3.7 A divisor D ∈ Div(E) is said to be principal if D = div(f) for some

function f ∈ K(E)×. Two divisors D1, D2 are said to be linearly equivalent, D1 ∼ D2

if D1 −D2 is principal.

From Definitions 3.3 and 3.7 we obtain an important class of divisors that will be

seen extensively when we discuss the Weil Descent attack of Gaudry, Hess and Smart

and the Abelian Variety attack of Gaudry in IV.3.3 and IV.3.6 respectively.

Definition 3.8 The divisor class group or the Picard group of E, denoted Pic(E),

is the quotient of Div(E) by the subgroup of principal divisors. The degree zero part

of the class group, Pic0(E), is the quotient of Div0(E) by the subgroup of principal

divisors.
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The following theorem summarizes all of the above information, its proof can be

found in [87].

Theorem 3.8 Let E be an elliptic curve defined over a field K. Let D =
∑

P nP (P )

be a divisor of degree zero on E. Then there is a function f such that D = div(f) iff∑
P [nP ](P ) = O on E.

With the above material in hand we are now going to construct both the Weil pairing

and the Tate-Lichtenbaum pairing. These pairings will then be used in IV.3.2.1 and

IV.3.2.2 to describe attacks on certain types of elliptic curve cryptosystems.

3.2 The Weil Pairing

Let n ∈ Z be such that char(K) - n, and let E be an elliptic curve such that

E[n] = {P ∈ E(K) | [n]P = O} ⊆ E(K). We want to construct a function,

which will be our pairing, which maps an element of E[n] × E[n] to an nth root

of unity, µn, in K. So let T ∈ E[n]. By Theorem 3.8, there is a function f such

that div(f) = n(T ) − n(O). Furthermore, if we chose a point T ′ ∈ E[n2] such that

[n]T ′ = T , we can use the above theorem a second time to construct a function g

such that div(g) =
∑

R∈E[n][(T
′ + R) − (R)]. Of course since we want this to be a

divisor we have to check to make sure that the sum is indeed O. But since there are

n2 points R ∈ E[n], the point R in
∑

(T ′ + R) will cancel with
∑

(R), thus making

the sum [n2]T ′ = [n]T = O. Notice that g is independent of the choice of T ′ [87],

since any two choices for T ′ will differ by an element in E[n].

Now let f ◦ n denote the function that multiplies a point by n then applies the
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function f . The point P = T ′ + R with R ∈ E[n] is a point such that [n]P = T .

Then

div(f ◦ n) = [n]{
∑
R

(T ′ +R)} − [n]{
∑
R

(R)} = div(gn)

Thus up to multiplication by a suitable constant we can assume that f ◦ n = gn.

Lastly if S ∈ E[n] and P ∈ E(K), we have that

g(P + S)n = f([n](P + S)) = f([n]P ) = g(P )n

As a result we have that g(P + S)/g(P ) ∈ µn, and is independent of the choice

of the point P . We then define the map we have just constructed by

en(S, T ) =
g(P + S)

g(P )
.

The following theorem lists the important properties of this pairing. The proof

can be found in [77] or [87].

Theorem 3.9 (Properties of The Weil Pairing) Let E be an elliptic curve de-

fined over a field K and let n be a positive integer. Assume that char(K) - n. The

Weil Pairing

en : E[n]× E[n]→ µn

satisfies the following properties:

1. en is linear in each variable.

2. en is non-degenerate in each variable

3. for all T ∈ E[n], en(T, T ) = 1

4. for all S, T ∈ E[n], en(S, T ) = en(T, S)−1

5. the pairing is Galois invariant
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The first four properties, especially the first two, will be exploited extensively when

development of the MOV attack takes place in IV.3.2.1. This deeper understanding

of the Weil pairing also gives us means to compute the pairing in an attempt to solve

the ECDLP.

3.3 The Tate-Lichtenbaum Pairing

In a similar manner to above, we will construct the Tate-Lichtenbaum Pairing that

will be used in IV.3.2.2 by the Frey-Rück attack.

In the construction of the Tate-Lichtenbaum pairing we will need a very powerful

and remarkable result; we state it here without proof, which can be found in either

[6] or [77, Exer. 2.11].

Theorem 3.10 (Weil Reciprocity) Let f and g be non-zero constant functions

defined on a curve C over K, with div(f) and div(g) having disjoint support12. Then

f((g)) = g((f)).

As we will see below, this theorem will give us a means of actually computing the

pairing.

Let E be an elliptic curve defined over a field K0. Let n be a positive integer with

gcd(char(K0), n) = 1. Define K = K0(µn) to be the extension field of K0 generated

by the set of nth roots of unity, µn = {u ∈ K×
0 | un = 1}. Take E(K)[n] = {P ∈

E(K) | [n]P = O}, and nE(K) = {[n]P | P ∈ E(K)}. Notice that nE(K) is a

subgroup of E(K), and hence we can look at the quotient group E(K)/nE(K). We

12The support of a divisor D =
∑

nP (P ), is the set of points where nP 6= 0. Thus the disjoint
support of two divisors implies that the sets of points for which nP 6= 0 are disjoint.
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are now going to define a pairing on E(K)[n] × E(K)/nE(K), however we need a

place to map to. If we define the following set, (K×)n = {un | u ∈ K×}, we can form

the quotient K×/(K×)n, which is a group of exponent n and is isomorphic to µn [6].

Now let P ∈ E(K)[n] and Q ∈ E(K)/nE(K). Notice here that technically we

should be writing Q as a coset in the second group, instead we will simply think of Q

are representative of an equivalence class. Now since [n]P = O, we can find a function

f such that div(f) = n(P )− n(O). Take D to be a degree zero divisor equivalent to

(Q)− (O), and such that D is defined over K with disjoint support from div(f). To

do this we can simply choose a random S ∈ E(K) and define D = (Q + S) − (S).

Since both div(f) and D are defined over K, the value f(D) ∈ K. Since div(f) and

D were constructed to have disjoint support, f(D) 6= 0, thus f(D) ∈ K×. We now

define the Tate-Lichtenbaum pairing in the following theorem.

Theorem 3.11 (The Tate-Lichtenbaum Pairing) Let E be an elliptic curve de-

fined over a field K0. Let n be a positive integer with gcd(char(K0), n) = 1. Set

K = K0(µn), D =
∑

P∈E nP (P ). The map

〈·, ·〉 : E(K)[n]× E(K)/nE(K) → K×/(K×)n

〈P,Q〉 7→ f(D) =
∏

P f(P )nP

is called the Tate-Lichtenbaum pairing and satisfies the following properties:

1. 〈·, ·〉 is linear in each variable

2. 〈·, ·〉 is non-degenerate

3. 〈·, ·〉 is Galois invariant

In IV.3.2.2 we will see a version of the pairing which is defined over finite fields of the

form Fq which is where our cryptographic schemes will take place. In IV.3.2 we will
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also discuss how to calculate each pairing, give a comparison of the two, and explain

the advantages and disadvantages of each.

4 Gröbner Bases

We provide a very brief introduction to Gröbner bases for those who may not be

familiar with them. A very good introduction to the subject can be found in [11],

with a more advanced treatment in [18].

Gröbner Bases arise in the exploration of polynomial rings defined over a field and

their ideals. If we have a polynomial ring defined over a field k in one variable, we

can give a complete description of any ideal I ⊂ k[x]. Since k is a field the ring k[x] is

a principal ideal domain, and so I = 〈g〉 for some polynomial g ∈ k[x]. k[x] is also a

unique factorization domain(UFD), and so we have access to various algorithms, such

as the euclidean algorithm for polynomials, and the extended euclidean algorithm.

What happens now if we have k[x1, x2]? Or k[x1, . . . , xn] for that matter? Do we still

have a euclidean algorithm in this setting? The answer is yes, but we need to find a

way to order things to be able to systematically deal with our polynomials. As we

shall see there are many different ways to produce orderings to do this. We begin

with some definitions.

Definition 3.9 A monomial ordering on k[x1, . . . , xn] is any relation on the set of

monomials xα, α ∈ Zn
≥0 such that

1. we have a total ordering on Zn
≥0

2. if α > β, then for all γ ∈ Zn
≥0, α+ γ > β + γ

3. we have a well-ordering on Zn
≥0
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As mentioned we can define several monomial orderings. Here are a few common

examples.

Definition 3.10 Let α, β ∈ Zn
≥0.

1. Lexicographic Order - We say α >lex β if α− β ∈ Zn
≥0.

We then write xα >lex x
β.

2. Graded Lex Order - We say α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi or |α| = |β| and α >lex β

3. Graded Reverse Lex Order - We say α >grevlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi or |α| = |β|

and in α− β ∈ Zn, the right most entry is negative.

Such an ordering now gives us a way of ordering our polynomials in k[x1, . . . , xn].

For the most part our first instinct is to use the lexicographic ordering, but this

ordering may not always result in the nicest Gröbner basis for a given ideal I ∈

k[x1, . . . , xn]. We make one last definition before reaching our main subject of this

section.

Definition 3.11 Let f =
∑

α aαx
α be a non zero polynomial in k[x1, . . . , xn] and let

> be a monomial order.

1. The multidegree of f is md(f) = max{α ∈ Zn
≥0 | aα 6= 0}.

2. The leading coefficient of f is LC(f) = amd(f) ∈ k.

3. The leading monomial of f is LM(f) = xmd(f).
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4. The leading term of f is LT(f) =LC(f)×LM(f).

We can now define a Gröbner basis.

Definition 3.12 For any fixed monomial ordering, a finite subset G = {g1, . . . , gp} ⊂

I of an ideal I is said to be a Gröbner basis if

〈LT(g1), . . . ,LT(gp)〉 = 〈LT(I)〉

With Gröbner bases we can answer many interesting questions about the polynomial

ring k[x1, . . . , xn], including the question about determining the points that are in

the variety V(f1, . . . , fs), that is determine the set of solutions to the polynomial

equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0

We will see the use of Gröbner bases again when we discuss an Index Calculus attack

on Abelian varieties developed by Gaudry in IV.3.6.

5 Resultants

In the discussion of Semaev’s attack in IV.3.5, the theory of Resultants will play

an important role. Classically resultants are closely tied to the ideas of Elimination

theory. In fact the resultant of two polynomials always lies in the first elimination

ideal of 〈f, g〉 [11]. However, the full results of elimination theory are beyond the

scope of this thesis. To summarize, given a system of polynomial equations, we can

determine a Gröbner basis for the ideal generated by these polynomials and can

successively eliminate variables from our set of equations for the Gröbner basis. We
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are then essentially solving the system of equations by back-substitution with respect

to the fixed ordering. These ideas can be best demonstrated by an example. This

example is due to Cox, Little and O’Shea in [11].

Suppose that we want to solve the system of equations

x2 + y + z = 1

x+ y2 + z = 1

x+ y + z2 = 1

If we let I = 〈x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1〉 and we compute a

Gröbner basis with respect to the lex ordering we get the polynomials

g1 = x+ y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2

But now the polynomial g4 is an equation in one variable and we can solve for z.

In turn we can then solve for g2, obtaining solutions for y, and finally for x using g1.

So we eliminated the variables in reverse compared to our ordering.

And now the definition of a resultant.

Definition 3.13 Given polynomials f, g ∈ k[x] of positive degree, write them in the

form

f = a0x
l + . . .+ al

g = b0x
m + . . .+ bm.
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We then form the Sylvester matrix of f and g with respect to x. The Sylvester

matrix is an (l+m)× (l+m) matrix, with l and m not necessarily equal, of the form

Syl(f, g, x) =



a0 b0
a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .

a2
. . . a0 b2

. . . b0
...

. . . a1
...

. . . b1
...

. . . a2
...

. . . b2

al
... bm

...

al
... bm

...
. . . . . .

al bm



where the entries above and below the coefficients are all zero. The resultant of f and

g with respect to x, Res(f, g, x), is the determinant of this matrix.

The ideas and results of Gröbner bases, Elimination theory, and Resultants will

be used in the descriptions of later attacks. In particular we will see them again

in the GHS Attacks and the techniques of Weil Descent in IV.3.3, The Summation

Polynomial attack by Semaev in IV.3.5, and Gaudry’s Index Calculus attack on

Abelian Varieties in IV.3.6.

6 Algebraic Geometry, Algebraic Groups and Abelian Vari-

eties

Algebraic Geometry is the study of the relationship between geometric objects, such

as curves, and polynomial rings which will define these geometric structures. In this

section we discuss some key concepts that will help us understand, not only the
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relationship between the algebraic and geometric structure, but future attacks that

will be proposed on elliptic curve cryptosystems.

The results in this section come from a variety of sources on the subject. For a

good exploration of the relationship between the geometry and the algebra we refer

the reader to [26] and [37]. The results concerning the algebra come from a variety of

source including [2], [39]13, [76], and (related specifically to elliptic curves) [77]. Any

results needed from commutative algebra are from [1] and [18].

6.1 Varieties and Dimension

Let K be a field with algebraic closure K. Recall that the set of points in n-

dimensional projective space can be defined as

Pn(K) = {(X0 : . . . : Xn) | Xi ∈ K,∃Xi 6= 0 for some i}/ ∼

where ∼ is an equivalence relation given by setting (X0 : . . . : Xn) ∼ (Y0 : . . . : Yn)

iff there exists λ 6= 0 ∈ K such that (X0 : . . . : Xn) = λ(Y0 : . . . : Yn).

For any extension field L such that K ⊂ L ⊂ K, the set of L-rational points

Pn(L) = {(X0 : . . . : Xn) | ∃λ 6= 0 ∈ K ∀i : λXi ∈ L}.

This is the set of points fixed by the absolute galois group of L, Gal(K/L).

Suppose now that we have a homogeneous polynomial f(X0, . . . , Xn)

∈ K[X0, . . . , Xn], and an ideal I ⊆ K[X0, . . . , Xn] with I generated by homogeneous

13Hartshorne approaches the ideas of Algebraic Geometry from the point of view of Sheaves and
Schemes. We will not introduce any of that here.
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polynomials and I 6= 〈X0 . . . , Xn〉. Then the following sets are well defined

Df (L) = {P ∈ Pn(L) | f(P ) 6= 0}

VI = {P ∈ Pn(K) | f(P ) = 0,∀f ∈ I}.

The sets Df (L) and VI are the open and closed sets respectively, in the Zariski

topology, attached to K in projective space.

Analogously we can define everything over affine space of K: n-dimensional affine

space is given by

An(K) = {(x1, . . . , xn) | xi ∈ K}

with the set of L-rational points being

An(L) = {(x1, . . . , xn) | xi ∈ L}.

Similarly one may define Df (L) and VI(L) to be the open and closed sets respectively,

with respect to the Zariski topology on An. However we have a little more structure

in An. A set S ⊂ An is closed if there is an ideal I ∈ K[x1, . . . , xn] with S = VI .

Unfortunately the ideal I is not uniquely determined by S. However, we can make a

selection for such an ideal. Take the maximal ideal containing such an ideal I, this

will be the radical ideal and is defined as

√
I = {f ∈ K[x1, . . . , xn] | fn ∈ I, for some n ∈ N}.

Definition 3.14 Let V be a closed set (in either affine or projective space). V is

said to be irreducible if it cannot be written as V = V1 ∪ V2 for two proper closed

subsets of V . If V is closed and irreducible then V is said to be a variety (in either
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affine or projective space). A variety V is said to be absolutely irreducible if V is also

irreducible in K, this makes V irreducible over all extensions L of K.

One way to determine if V ⊆ An (or Pn) is a variety is the following.

Lemma 3.2 [2] A subset V ⊆ An is a variety (affine or projective) iff V = VI with

I a prime ideal in K[x].

This lemma is a good demonstration of the relationship between the geometry and

the algebra; a set of polynomial equations which define a geometric object is irre-

ducible iff the corresponding ideal associated to this set is prime in its corresponding

polynomial ring.

One final note before concluding this section is the idea about the dimension of a

variety. These ideas will be revisited when we talk about the GHS attack in IV.1.3.

Definition 3.15 An and Pn are Noetherian topological spaces, and hence any de-

scending sequence of closed subsets S1 ⊇ S2 ⊇ . . . becomes stationary. This in turn

makes the respective polynomial rings noetherian as well. Suppose now that V is a

variety. The dimension, dim(V ), is defined to be the supremum on the lengths of all

chains of distinct irreducible closed subspaces of V 14. If dim(V ) is 1, then V is called

a curve.

14A chain is a sequence of containments V = V0 ⊇ V1 ⊇ V2 ⊇ . . . ⊇ Vw. The length of a chain is
then the number of subspaces in that sequence.

49



6.2 Function Fields, Morphisms and Rational Maps

Definition 3.16 Let V be an affine variety over K, and I the corresponding prime

ideal. Then

K[V ] = K[x1, . . . , xn]/I

is called the coordinate ring of V . We can also form the function field of V denoted

K(V ); this is simply the quotient field of the coordinate ring K[V ].

Definition 3.17 A morphism ϕ from An to Am is given by an m-tuple of polynomials

in K[x], that is

ϕ : An → Am

P 7→ (f1(P ), . . . , fM(P ))

A morphism of varieties from V ⊂ An to W ⊂ Am is given by the restriction to V

from An to Am with image in W . We will denote the set of morphisms from one

variety to another as MorK(V,W ), and we will drop K from this when the context of

the underlying field is understood.

Suppose now that ϕ ∈MorK(V,W ), and f ∈ K[W ]. The composition of functions

induces a morphism on the coordinate rings:

ϕ∗ : K[W ]→ K[V ]; ϕ∗(f) = f ◦ ϕ

Note that ϕ∗ is injective iff ϕ is surjective, and ϕ is injective iff ϕ∗ is surjective.

Definition 3.18 A rational map is simply the quotient of two functions of K[V ]

defined on an open subset of V such that the denominator is not zero at the point P .
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Normally when we talk about morphisms and rational maps we will distinguish be-

tween the two. When we talk about rational maps, we will abbreviate this by simply

calling them maps.

6.3 Abelian Varieties

6.3.1 The Definition

Definition 3.19 An algebraic group G over a field K is an absolutely irreducible

variety defined over K together with a group structure given by the morphisms

1. the addition morphism
m : G × G → G

2. the inverse morphism
i : G → G

3. the neutral element, which is a K-rational point

0 ∈ G(K)

satisfying the following group laws

m ◦ (IdG ×m) = m ◦ (m× IdG) (associativity),

m|{0}×G = p2, and

m ◦ (i× IdG) ◦ δG = c0.

where p2 is the projection of G × G onto the second argument, δG the diagonal map

from G to G × G, and c0 is the map which sends G to 0.

Definition 3.20 Projective algebraic groups are Abelian Varieties and are Commu-

tative.
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6.3.2 Homomorphisms, Isomorphisms and Isogenies

Since abelian varieties are a class of varieties we can consider morphisms between

them. Let A and B be abelian varieties. A remarkable result is that any ϕ ∈

MorK(A,B) is actually a homomorphism of groups. That is, if ⊕ and ⊕′ represent

the addition laws on A and B respectively, then for all points P,Q ∈ A, ϕ(P ⊕Q) =

ϕ(P ) ⊕′ ϕ(Q) iff the neutral element of A is mapped to the neutral element of B.

Better still, we can define a translation map,

tP : A → A

Q 7→ P ⊕Q

for which we get the following result

Theorem 3.12 Every morphism from A to B is a homomorphism up to the trans-

lation map t−(ϕ(0A)).

The following theorem, from [2], introduces some fundamental concepts and some

important notation.

Theorem 3.13 Let ϕ ∈ HomK(A,B).

1. The image, Im(ϕ), of ϕ is a subvariety of B, which becomes an abelian variety

by restricting the addition law of B to Im(ϕ).

2. The kernel, ker(ϕ), of ϕ is closed in A. It contains a maximal absolutely irre-

ducible subvariety, ker(ϕ)0 containing 0A. ker(ϕ)0 is an abelian subvariety of

A and is called the connected component of unity of ker(ϕ).

3. The dimension of A is

dim(Im(ϕ)) + dim(ker(ϕ)0) = dim(A)
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Definition 3.21 1. The map ϕ is said to be an isogeny if Im(ϕ) = B and ker(ϕ)

is finite, while

2. A morphism, ϕ is said to be an isomorphism if there exists a morphism ψ ∈

HomK(B,A), such that ϕ ◦ ψ = idA and ψ ◦ ϕ = idB.

Granting Theorem 3.13, one can easily show that the following holds true.

Lemma 3.3 ϕ ∈ HomK(A,B) is an isogeny iff dim(A) =dim(B) and dim(ker(ϕ)0) =

0.

Before we link these results to elliptic curves, we present one last definition.

Definition 3.22 An abelian variety is said to be simple if it does not contain a proper

abelian subvariety.

Notice here that if we look at everything at the level of elliptic curves (abelian

varieties of dimension one), we get the following result, which may seem more familiar.

Theorem 3.14 [77] Let E1 and E2 be elliptic curves defined over K. If ϕ : E1 → E2

is a non-constant isogeny defined over K, then ϕ induces an injection ϕ∗ : K(E2)→

K(E1) which fixes K. Also K(E1) is a finite extension field of ϕ∗(K(E2)), and the

degree of ϕ is the degree of the extension [K(E1) : ϕ∗(K(E2))]. It follows that if ϕ is

a map of degree one then ϕ is an isomorphism.
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4 Attacking the Elliptic Curve Discrete

Logarithm Problem

1 Introduction

We now want to focus on how to solve the Elliptic Curve Discrete Logarithm Prob-

lem(ECDLP). Recall that the ECDLP can be stated as follows:

Definition 4.1 Let E(Fq) be an elliptic curve defined over Fq, where q = p or q = pm

for some m ∈ N. Suppose that P ∈ E(Fq), and that Q ∈ E(Fq) is such that Q ∈ 〈P 〉,

ie. the subgroup generated by P . Determine the unique integer n, such that Q = [n]P .

Attacks on the ECDLP can be split into two main categories: attacks that work in the

general setting regardless of properties of a given elliptic curve, and attacks that use

specific properties of the elliptic curve to develop a different approach. Consequently,

we have subdivided this chapter into two parts. The first part deals with the general

attacks, while the second part will deal with more advanced attacks, including Pairing

attacks, the method of Weil Descent, a discussion of how the Index Calculus fails to

translate to the situation of elliptic curves, and the attack that was developed from

this idea. Before continuing onto the next section, the reader should be reminded of
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the attacks on the DLP. This next section contains the analogies between the two

problems, and hence one reason for introducing the attacks on the DLP.

Also within the body of this text the reader will find Pari/GP code, which one

could use to calculate results for a specific instance of the ECDLP. For those unfamil-

iar with Pari/GP, an appendix at the end of this thesis explains some of the functions

that were used in the programs.

2 General Attacks

2.1 Exhaustive Search

Of course one way to attack the ECDLP is to perform an exhaustive search when the

points P and Q are given. Since, in practice, P is chosen to have significantly large

order, this then makes the exhaustive search infeasible.

Algorithm 4.1 Exhaustive Search

1: print("Please enter a Prime"); p=input();

2: print("Please enter coefficients for an elliptic curve");

3: a=input();b=input();c=input();d=input();e=input();

4: Ep=ellinit([Mod(a,p),Mod(b,p),Mod(c,p),Mod(d,p),Mod(e,p)]);

5: print("Please enter points P and Q for which you wish to solve the

ECDLP");

6: P=input();Q=input();

7: print("Please enter the order of the generator"); n=input();

8: for(i=1,n,R=ellpow(Ep,P,i);

9: if(R==Q, print("The answer is:" i)); break(1))

2.2 Baby-Step, Giant-Step Algorithm

Similar in nature to the setting of the DLP, this attack uses a combination of com-

putational power and storage in an attempt to solve the ECDLP. Let E(Fq) be an
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elliptic curve with generator P . Suppose that P has order n, and let Q ∈ 〈P 〉. Sup-

pose that we want to solve Q = [k]P . Set m = d
√
n e and compute [m]P . We

now make a list of [i]P for 0 ≤ i < m, and store this list. We can now compute

Q− [j]([m]P ), for 0 ≤ j ≤ m− 1 until we have found a match from the list that we

have stored. Once we have a match we then have the following:

[i]P = Q− [j]([m]P ) hence,

Q = [i]P + [j]([m]P ).

Therefore we have solved the ECDLP since k ≡ i+ jm mod n.

Again this attack takes at most
√
n operations and stores

√
n values in a list to

check for a match. Thus the expected running time of this algorithm is O(
√
n) [87].

Notice here that we can make this slightly more efficient. When we compute the

points [i]P , we only need to store half of these values. In other words, we only have

to compute [i]P for 0 ≤ i ≤ m
2
, and then we can check if Q− [j]([m]P ) = ±[i]P [87].

Algorithm 4.2 Baby-Step, Giant-Step

1: print("Please enter a Prime"); p=input();

2: print("Please enter coefficients for an elliptic curve");

3: a=input();b=input();c=input();d=input();e=input();

4: Ep=ellinit([Mod(a,p),Mod(b,p),Mod(c,p),Mod(d,p),Mod(e,p)]);

5: print("Please enter point P and Q for which you wish to solve the

ECDLP");

6: P=input();Q=input();

7: print("Please enter the order of the generator"); n=input();

8: m=ceil(sqrt(n));

9: R=ellpow(Ep,P,-m);

10: for(i=0,m,W=ellpow(Ep,P,i);

11: for(j=0,m-1,Z=elladd(Ep,Q,ellpow(Ep,R,j));

12: if(Z==W, print("The answer is:" Mod(i+j*m,p));break(2))))

Note that there are some issues here with storing this list. This must be done
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properly so that we avoid too many table look-ups. The algorithm as presented here

would require roughly n table look-ups to find a match and would no longer have an

expected running time of O(
√
n). To avoid this, the stored list must be sorted and

more sophisticated searching techniques must be used.

Example: Let E be the elliptic curve y2 = x3 + 130x + 565 defined over F719.

Suppose that P = (107, 443) and that Q = (608, 427), and we want to determine the

unique integer λ such that Q = [λ]P . Note here that it can be shown that P has order

699. Using the Baby-Step, Giant-Step method we first compute m =
⌈√

699
⌉

= 27,

and calculate [m]P = [27](107, 443) = (635, 361). We now create and store a list.

To avoid this we could sort the stored list, by x-coordinate say, so that when a new

point is generated we know where in the list to look to find a match. for all values

of [i]P for 0 ≤ i < m.

Now we can calculate Q− [j]([m]P ) for 0 ≤ i [i]P i [i]P
0 O 1 (107, 443)
2 (303, 175) 3 (460, 25)
4 (233, 580) 5 (715, 585)
6 (631, 182) 7 (106, 576)
8 (220, 206) 9 (325, 326)
10 (575, 481) 11 (98, 415)
12 (213, 106) 13 (434, 522)
14 (51, 162) 15 (425, 144)
16 (468, 681) 17 (234, 497)
18 (392, 319) 19 (44, 294)
20 (314, 300) 21 (670, 460)
22 (142, 478) 23 (471, 631)
24 (404, 91) 25 (598, 565)
26 (256, 690)

Table 4.1: Data for Baby-Step, Giant-
Step Attack

j ≤ m − 1 until we find a match in the table

to the right. So we compute

Q− [0]P = Q

Q− [1]P = (24, 637)

Q− [2]P = (551, 578)

Q− [3]P = (642, 619)
...

Q− [15]P = (596, 564)

Q− [16]P = (597, 529)

Q− [17]P = (406, 409)

Q− [18]P = (106, 576)
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At which point we can stop since we realize that we have a match. Hence we find

that λ ≡ i+ jm ≡ 7 + 18× 27 ≡ 493 mod 699 as required.

2.3 Pollard’s ρ-Method

Let E(Fq) be an elliptic curve and P ∈ E(Fq). Suppose that P has order n, where n

is prime, and let Q ∈ 〈P 〉. Suppose that we want to solve Q = [k]P . In this attack

we will attempt to find distinct pairs of integers (a, b) and (a′, b′) modulo n such that

[a]P + [b]Q = [a′]P + [b′]Q. Rearranging this we can obtain a solution for k, namely

k ≡ (a− a′)(b′ − b)−1 mod n. (Note that since n was assumed here to be prime the

difference of b and b′ can be inverted).

One method for finding these pairs of integers is to simply select

a, b ∈ [0, n − 1] uniformly at random, compute the point [a]P + [b]Q, and then

store the triple (a, b, [a]P + [b]Q). We continue to generate pairs (a, b) uniformly

at random and check these against all previously stored triples until we find a pair

(a′, b′) with [a′]P + [b′]Q where (a, b) 6= (a′, b′). When this happens we have solved

the ECDLP and as mentioned above, we can rearrange [a]P + [b]Q = [a′]P + [b′]Q as

[a− a′]P = [b′ − b]Q = [b′ − b]([k]P ), and thus k ≡ (a− a′)(b′ − b)−1 mod n.

Again as in the setting of the DLP, the birthday problem governs the expected

running time of this algorithm. This first method gives an expected running time of

O(
√

πn
2

) [38], but unfortunately requires approximately O(
√

πn
2

) amount of storage

for the triples that we have computed.

A second approach that has roughly the same running time, but uses less storage

is also known. Instead of storing a list of triples, we define a function f : 〈P 〉 → 〈P 〉 so
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that for any X ∈ 〈P 〉 and a, b ∈ [0, n−1] with X = [a]P+[b]Q, we can easily compute

f(X) = X ′ and a′, b′ ∈ [0, n − 1] with X ′ = [a′]P + [b′]Q. One way to define such

a function is to partition 〈P 〉 into L sets of roughly equal size, say {S1, S2, . . . , SL}.

We define a second function H so that H(X) = j if X ∈ Sj. Then aj, bj ∈ [0, n− 1]

are chosen uniformly at random for 1 ≤ j ≤ L. Now our function f : 〈P 〉 → 〈P 〉 is

defined by

f(X) = X + [aj]P + [bj]Q, where j = H(X).

So, if X = [a]P + [b]Q, then f(X) = X ′ = [a′]P + [b′]Q where a′ = a + aj mod n

and b′ = b+ bj mod n [38]. This then determines a sequence of points in 〈P 〉. Since

〈P 〉 is finite we will eventually obtain a collision, thus obtaining our pairs of integers

(a, b) and (a′, b′), and so enabling us to solve the ECDLP.

As mentioned, this approach has a similar running time to the first, but requires

less storage, since we are no longer required to store ordered triples in order to find

a collision.

Note that to ensure that a match has been made, we could modify this program

and simply use n in place of m. Although we expect to obtain a match within m

steps thanks in part to the birthday problem, there is nothing guaranteeing a match

in ceil(sqrt(n)) steps15.

15Again a storage issue arises in this algorithm. See the note following Algorithm 4.2.
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Algorithm 4.3 Pollard’s Rho

1: print("Please enter a Prime"); p=input();

2: print("Please enter coefficients for an elliptic curve");

3: a=input();b=input();c=input();d=input();e=input();

4: Ep=ellinit([Mod(a,p),Mod(b,p),Mod(c,p),Mod(d,p),Mod(e,p)]);

5: print("Please enter point P and Q for which you wish to solve the

ECDLP");

6: P=input();Q=input();

7: print("Please enter the order of the generator"); n=input();

8: m=ceil(sqrt(n));

9: va=vector(m,X,random(n));

10: vb=vector(m,Y,random(n));

11: R=vector(m,i,elladd(Ep,ellpow(Ep,P,va[i]),ellpow(Ep,Q,vb[i])));

12: for(j=1,m-1,

13: for(k=j+1,m,

14: if(R[j]==R[k],print(Mod((va[j]-va[k])*((vb[k]-vb[j])(̂-1)),n));

15: break(2))))

2.3.1 Speeding up Pollard’s ρ-Method

There are two ways that one can improve on the expected running time of Pollard’s

ρ-Method. The first method simply involves a parallelized attack. Suppose that we

have M processors available at our disposal. Recall that above we have created a

sequence of points in 〈P 〉. Denote this sequence as {Xi}i≥0, where Xi ∈ 〈P 〉. Feed

each processor a random starting point X0, and let them all use the same function f ,

similar to f defined above, to compute further members of the sequence {Xi}i≥0. If

two different processors collide, then the two sequences will be identical afterwards,

which is clear from the way we have defined our function f . The trick is to determine

an efficient method of finding a collision. One method is to establish a distinguishing

property16 of a point. When this distinguished point is hit in the sequence, the

16An example of a distinguishing property could be that the leading t bits of a point are all zero
say[38].
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processor can send the information back to the central server where it can be stored.

When the server receives the distinguished point a second time, it can compute the

discrete logarithm and terminate the M processors. Denote the proportion of points

in 〈P 〉 that have this distinguishing property by θ. The expected number of steps per

processor before a collision occurs is 1
M

√
πn
2

, and a distinguished point is expected

after 1
θ

steps. Thus the total expected running time before a collision of distinguished

points is expected is 1
M

√
πn
2

+ 1
θ

[38].

The second method to speed up Pollard’s ρ-Method is by using automorphisms.

Let ψ : 〈P 〉 → 〈P 〉 be an automorphism of groups, where P ∈ E(Fq) has order n.

Suppose that ψ has order t, in other words, t is the smallest positive integer such

that ψt(R) = R for all R ∈ 〈P 〉. In this way we can define an equivalence relation on

〈P 〉 by the following. R1 ∼ R2 iff R1 = ψj(R2) for some j ∈ [0, t− 1]. We now define

the equivalence class [R] containing R ∈ 〈P 〉, simply as powers of ψ(R), thats is,

[R] = {R,ψ(R), ψ2(R), . . . , ψl−1(R)},

where l is the smallest positive divisor of t such that ψl(R) = R.

We are attempting here to define our function f on the equivalence classes of

〈P 〉 rather than just points, to speed up our calculations. To do this we have to

choose representatives for each class [R], denote this by R. We can then define a

new function on our representatives by setting g(R) = f(R). So suppose we know an

integer λ ∈ [0, n−1], such that ψ(P ) = λP . Since ψ is an automorphism, ψ(R) = λR

for all R ∈ 〈P 〉. Thus if we know integers a and b such that X = [a]P +[b]Q, then we

can efficiently determine integers a′ and b′ such that X = [a′]P + [b′]Q. This is since
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if we have that X = ψj(X), then a′ = λja mod n and b′ = λjb mod n [38]. We

can now use g and the equivalence classes in the parallelized version of the algorithm

above and obtain a speed up. If each equivalence class has size approximately t,

then we’ve reduced the search space by a factor of approximately n
t
, thus making the

expected running time of this algorithm O( 1
M

√
πn
2t

+ 1
θ
) [38].

Example: Here we present an example of the speed-up for Pollard’s Rho. Let

ψ(P ) = −P , that is the automorphism which sends P to its negative, −P . Clearly ψ

has order two and thus the expected running time for Pollard’s Rho becomes O(
√
πn
2

).

As an example E be the elliptic curve y2 = x3 + a b [a]P + [b]Q
179 123 (47, 297)
207 134 (168, 508)
152 50 (210, 129)
118 199 (119, 665)
51 55 (649, 199)
70 104 (47, 422)
207 99 (305, 430)
57 76 (140, 298)
53 205 (414, 453)
210 16 (293, 81)
137 85 (133, 221)
135 172 (501, 547)
180 171 (22, 542)
113 192 (671, 569)
160 77 (280, 500)
207 28 (463, 17)
231 89 (260, 296)
62 151 (284, 505)
181 99 (316, 540)
110 130 (588, 453)

Table 4.2: Data for Pollard’s
Rho Attack

130x + 565 defined over F719. This time suppose that

P = (312, 90) and that Q = (475, 662). We want to

determine the unique integer λ such that Q = [λ]P ,

note here that it can be shown that P has prime order

233.

To solve the ECDLP using the speed-up of Pollard’s-

ρ, we choose uniformly at random a, b ∈ [0, 232], cal-

culate R = [a]P + [b]Q and store the triple (a, b, R)

until such time we encounter a second triple (a′, b′, R′)

such that R = R′ or R = −R′. From the birthday

problem we expect we should only need to calculate

√
πn
2

=
√

232π
2

= 14 such triples before a match is ob-

tained, instead of roughly 20 such triples using the regular Pollard’s Rho.

We notice that after only calculating six of such triples that we have matched our
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x-coordinate and can solve the ECDLP.

Hence we have that [179](312, 90)+[123](475, 662) = −([70](312, 90)+[104](475, 662))

⇐⇒ [179 + 70](312, 90) = −([104 + 123])(475, 662) ⇐⇒ (−[104 + 123])−1[179 +

70](312, 90) = (475, 662), which in turn allows us to solve for λ. Hence we have that

λ ≡ (−[104 + 123])−1[179 + 70] mod 233 and thus λ ≡ 158 mod 233 which gives us

the solution to the ECDLP in this case, as required.

2.4 Pollard’s λ-Method

As in II.1.4 one can describe this algorithm in terms of a tame kangaroo attempting

to catch a wild kangaroo. If the solution to the ECDLP is known to lie in a certain

interval, say [a, b] ⊂ [0, n] where n is the order of the subgroup generated by P on a

curve E(Fq) for which the instance of the ECDLP is attempting to be solved, then the

setup is entirely similar to II.1.4. Instead we focus our attention on the parallelized

version of the algorithm and provide immediate speedups of the original.

In the tradition of Pollard’s original setup and as in [86], we describe the paral-

lelized version involving kangaroos. Instead of simply having one tame and one wild

kangaroo, we now have two herds of kangaroos, a wild herd and a tame herd. Suppose

that we want to employ M processors in attempting to solve the ECDLP. We launch

M
2

tame kangaroos from known starting points, and M
2

wild kangaroos from unknown

starting points. Whenever a kangaroo lands on a distinguished point, we store this

value in a list that is common to all processors. With each distinguishing point we

have to record also which type of kangaroo landed on this point, wild or tame, along

with its distance traveled from its original staring point. Now if kangaroos of the
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same type land on the same distinguishing point then it is clear that they will follow

the same path from that point on. If this is the case then we can alter the path of

one of the kangaroos by multiplying by a small random distance. If the kangaroos

are of a different type then we can trace back the jumps and subtract the distance to

obtain our solution for the ECDLP. It can be shown, as in [86], that this method of

parallelization results in a linear speedup in the number of processors, namely M in

this case. Thus the expected number of steps for this parallelized version to solve an

instance of the ECDLP is then O(

√
πn
2

M
) where M is the number of processors being

employed.

2.5 The Pohlig-Hellman Method

The setup for this attack is similar to the setup in the case of the DLP. Suppose that

we are given an elliptic curve E(Fq), a point P ∈ E(Eq) of order n and Q ∈ 〈P 〉. We

again want to solve for the unique integer k such that Q = [k]P . Suppose further

that we know the factorization of n, say n =
∏r

i=1 l
ei
i , where each li is prime. Similar

to the situation in the case of the DLP, we will now attempt to solve for k by reducing

the problem to solve for values of ki ≡ k mod lei
i for 0 ≤ i ≤ r, which gives us a
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system of congruences modulo each prime li, namely

k ≡ k1 mod le11

k ≡ k2 mod le22

k ≡ k3 mod le33 (4.1)

...

k ≡ kr mod ler
r .

The Chinese Remainder Theorem guarantees the existence of a unique solution,

namely k.

Let’s take a closer look at how this works. For the moment fix a prime say le11 .

We compute k1 as follows. We write the base-l1 representation of k1,

k1 ≡ a0 + a1l1 + a2l
2
1 + . . .+ ae1−1l

e1−1
1 mod le11 , where each ai ∈ [0, l1 − 1]. (4.2)

We begin by computing a list of small values for each prime divisor li of n. Set

Ti = {[j]([n
li
]P ) : 0 ≤ j ≤ li − 1}. We will look for a match with these points and

values that we will determine below. When we find a match we have solved for a

given coefficient in the base-l1 expansion of k. We can now compute the following,

[
n

l1
]Q = [

n

l1
]([a0 + a1l1 + . . .+ ae1−1l

e1−1
1 ]P )

= [a0][
n

l1
]P + ([a1 + a2l1 + . . .])[n]P = [a0][

n

l1
]P.

Thus we can now look in our list T1, find the matching point in the list and read off

the coefficient a0.

To solve for the next coefficient, a1, we have to change our starting point which

can be easily done. Since we have already solved for a0 we can use it and set Q1 =
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Q − [a0]P then perform the above calculation using Q1 instead, and shifting by the

proper quantity to isolate for a1. If we multiply (4.2) by n
l21

, after a0 has been removed

this will then give us

[
n

l21
]Q1 = ([a1 + a2l1 + . . .])[

n

l1
]P = [a1]([

n

l1
]P ),

and again we look in our list T1 for a matching solution. This then gives us a result

for a1. We continue in this way until we have solved for each coefficient in the base-l1

expansion of k1. We then continue and solve for each ki in the same manner. When

this is done we solve the system as in (4.1) and recover the original value of k in our

original problem Q = [k]P , thus solving the ECDLP.

The expected running time of this algorithm is O(
√
l′) [87], where l′ is the largest

prime divisor of n. In practice this attack becomes infeasible when n has a large

prime divisor. If this is the case, it then becomes difficult to make and store the list

T to find matches, let alone attempting to solve for k′ in its base-l′ expansion.

Example: Let E be the elliptic curve y2 = x3 + 130x + 565 defined over F719.

Suppose that P = (107, 443) and that Q = (608, 427). Now we want to determine

the unique integer λ such that Q = [λ]P , note here that it can be shown that P has

order 699, which factors as 699 = 3× 233.

Using the Pohlig-Hellman attack, we need to compute λ mod 3 and λ mod 233,

we will them obtain a unique solution by using the CRT.

λ mod 3: We start by computing our list

T = {j([699

3
]P ) | 0 ≤ j ≤ 2} = {O, (24, 82), (24, 637)}.

and we compute [699
3

]Q = [699
3

](608, 427) = (24, 82). We now appeal to T to determine
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a match and we find that λ ≡ 1 mod 3.

λ mod 233: We have a much larger list to compute this time.

T = {j([699

233
]P ) | 0 ≤ j ≤ 222} = {j([3]P ) | 0 ≤ j ≤ 222}.

We do not list these result here, but include them at the end of this thesis in an

appendix for the interested reader. Calculating [699
233

]Q = [3]Q = (306, 52), we find

that this matches with entry 27 in our list T . This then yields λ ≡ 27 mod 233.

Using the CRT on the system of congruences

λ ≡ 1 mod 3

λ ≡ 27 mod 233

we find that we obtain the unique solution λ ≡ 493 mod 699 as required.

2.6 Conclusions

The following table summarizes the expected running time of our general attacks.

Attack Expected Running Time Speed Up

Exhaustive Search O(n)

Baby-Step, Giant-Step O(
√
n)

Pollard’s ρ O(
√

πn
2

) O( 1
M

√
πn
2

+ 1
θ
)

O( 1
M

√
πn
2t

+ 1
θ
)

Pollard’s λ O(
√

πn
2

) O(

√
πn
2

M
)

Pohlig-Hellman O(
√
l′)

Table 4.3: Expected Running Times of the General Attacks on the ECDLP
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All of the general attacks on the ECDLP are expected to run in fully exponential

time. The best attacks out of the above, are Pollard’s ρ-Method with its speedups,

and the Pohlig-Hellman algorithm when the factorization of n is known to be com-

posed of small primes. The best known algorithm for a general purpose attack is

known to be a combination of Pollard’s ρ and the Pohlig-Hellman attack which runs

in O(
√
p), where p is the largest prime divisor of n [38].

Recall that at the outset of this document we mentioned three cases in which the

ECDLP can be easily solved, namely,

1. If #E(Fp) = p+1 (the supersingular case) then the ECDLP can be reduced to

the DLP on the multiplicative group of the finite field with pk elements.

2. If #E(Fp) = p (the anomalous case) then the ECDLP can be reduced to simple

addition in Fp, essentially by lifting the curve modulo p2.

3. If #E(Fp) is divisible by only small primes, then one can use the Pohlig-Hellman

method which solves the problem in time O(
√
p′), where p′ is the largest prime

divisor of E(Fp).

We have just seen the first attack that is possible in this setting. The Pohlig-Hellman

Method is an efficient attack as long as #E(Fp) is divisible by small primes. In the

next section, we discuss the attacks involving Supersingular curves and Anomalous

curves, and how to avoid these attacks.
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3 Specialized Attacks

3.1 Anomalous Curves

We now begin to use the properties of elliptic curves to help in our quest to solve in-

stances of the ECDLP. Recall that the Hasse-Weil theorem gives us an approximation

for the number of rational points on an elliptic curve, that is |#E(Fq)| ≤ q+1+2
√
q.

Using Schoof’s algorithm or one of its variants we can compute explicitly the number

of rational points on a curve. It turns out that this result is a simple classification of

anomalous curves.

Definition 4.2 An Elliptic Curve is said to be anomalous if #E(Fq) = q.

Attacks on these curves were developed independently by Satoh and Araki in [68],

Semaev in [72] and Smart in [82]. Each version of the attack uses different ideas to

compute the discrete logarithm and hence are all worth exploring. However, we will

explore only the attacks presented by Smart and Semaev, the main reason being that

these attacks have a similar running time and are quicker than the attack described by

Satoh and Araki in [68]. Although all algorithms yield polynomial running times, the

algorithm in [68] is O((log p)3) compared to algorithms that run in O(log p) presented

in [72] and [82]. The attack by Smart will be discussed in detail while the attack by

Semaev will be explained but some of the details will be omitted. We will also make

use of the following lemma which is taken from [77]:

Lemma 4.1 (Hensel’s lemma) Let R be a ring which is complete with respect to

some ideal I ⊂ R, and let F (x) ∈ R[x] be a polynomial. Suppose that a ∈ R satisfies,
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for some n ≥ 1,

F (a) ∈ In and F ′(a) ∈ R×.

Then for any α ∈ R with α ≡ F ′(a) mod I, the sequence

w0 = a, wm+1 = wm −
F (wm)

α

converges to an element b ∈ R such that

F (b) = 0 and b ≡ a mod In.

If further R is an integral domain then b is uniquely determined.

This lemma will enable us to perform a lift of an elliptic curve, a process which we

describe below.

Let E be an elliptic curve defined over a prime field Fp, with #E(Fp) = p.

Suppose that P and Q are points on E such that P = [m]Q for some integer m, and

we wish to find a solution for m. What we would like to do is apply a map that is a

homomorphism from E(Fp) into a group where solving the ECDLP would be easier,

say F+
p . Unfortunately we cannot immediately apply such a map over Fp, however

we can apply such a map for curves defined over Qp
17.

First we compute a lift of the original curve E to a curve E defined over Qp, that

takes points P and Q to points P and Q respectively, with the condition that upon

reduction modulo p the result returns E. The above lift can be done using Hensel’s

lemma. If P = (x, y) then upon reduction modulo p, P = (x, y′) where P and P

17These are commonly referred to as the p-adic numbers. An excellent introduction to the p-adic
numbers can be found in [2].
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share the same x-coordinate and y′ is computed via Hensel’s lemma. When we do

this we have the following:

Q− [m]P = R ∈ E1(Qp)

where E1(Qp) is the kernel of the map φ : E(Qp)→ E(Fp) [82]. Also note that

E0(Qp)/E1(Qp) ∼= E(Fp) and E1(Qp)/E2(Qp) ∼= E(F+
p )

where En(Qp) = {P ∈ E(Qp) | ν(x(P )) ≤ −2n} ∪ {O} and ν(x(P )) denotes the

p-adic valuation on the x-coordinate of the point P .

Since the groups E(Fp) and F+
p have the same order by assumption we obtain the

following equation

[p]Q− [m]([p]P ) = [p]R ∈ E2(Qp).

We then apply the p-adic elliptic logarithm ψp, to each term in the equation above,

which are all points in E1(Qp) and hence well defined. We thus obtain

ψp([p]Q) = mψp([p]P ) = ψp([p]R) ≡ 0 mod p2.

However since ψp ≡ −x
y

mod p2 when (x, y) ∈ E1(Qp) [82], we have that

m ≡ ψp([p](Q))

ψp([p]P )
mod p.

Thus we have found m and have solved the ECDLP in this case.

The governing step in this algorithm is to simply compute [p]P and [p]Q which

takes O(ln p) steps [82]. Note that this is somewhat of a randomized algorithm.

There is a possibility that when computing an arbitrary lift of the points P and Q
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at the outset of the algorithm, that we have actually computed a canonical lift18

of the original points and that the method above will not work. The likelihood of

this happening is 1
p

[82], which in practice is insignificant. In the case that this does

happen we can simply compute another lift of the points P and Q and the original

curve E.

The approach presented in [72] by Semaev is similar in nature and also produces

an algorithm that runs in O(ln p). The difference here is that Semaev uses the theories

behind divisors to produce a map from the group of points on the elliptic curve in

question to a multiplicative group of an extension of Fqk where k should be small.

There are two cases to consider when doing this.

1. Suppose that the subgroup generated by P produces a subgroup of order m

with gcd(m, p) = 1. Then it is the case that 〈P 〉 is isomorphic to a subgroup

in the extension Fqk with qk ≡ 1 mod m. Elements in the isomorphism of

〈P 〉 → F×q can be easily determined and take no more then O(lnm) steps [72].

When k is small we then have a effective algorithm for computing the ECDLP.

2. If on the other hand gcd(m, p) 6= 1, this approach will not work. We can

however do the following. Set m = psm1 with s > 0, and gcd(m1, p) = 1.

In this case we can then do the above reduction with m replaced by m1 and

determine the extension Fqk with minimal k such that qk ≡ 1 mod m1.

18A canonical lift from E to E is one that E reduced mod p yields E and that the respective
endomorphism rings are isomorphic. A canonical lift produces no information about the ECDLP
here.
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Since an elliptic curve E is isomorphic to the quotient of the group of divisors

of degree zero by the subgroup of principal divisors, we can write a point Q as

DQ =
∑
nTT , say for example DQ = (Q) − (O). Further if Q is an element of

the subgroup generated by P then pDQ is a principal divisor that we can denote as

div(fQ) = pDQ for some function fQ on E.

Semaev further goes on to prove the following lemmas which will be stated here,

the proofs can be found in [72].

Lemma 4.2 Let f be a function on E such that div(f) = pD for some principal

divisor D. Let f ′ = df/dx be the derivative with respect to x. Then div(f ′) =

div(f)− div(y).

Lemma 4.3 The map

φ : 〈P 〉 → Fq

φ(Q) =


div(f ′Q/fQ)(R) if Q 6= O,

0 if Q = O.

is a well defined isomorphic embedding of 〈P 〉 into Fq.

The third lemma is simply a statement of the expected time needed to evaluate

the function f ′Q/fQ at a point R in Fq, which takes no more then O(ln p) operations.

With all three of these lemmas we can see that to determine an integer n such

that Q = [n]P in E(Fq) we simply need to calculate φ(Q), ψ(P ) ∈ Fq, then n =

φ(Q)(ψ(P ))−1 [72], with φ defined as above and ψ defined as in lemma 3 of [72].
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Example: This example will use a slightly different technique than the results

in this section. The difference here being the logarithm map that we are using. The

methods of this example are closely related to the methods of Smart in [82], however,

we ease the method of determining m above by using another method to compute

our lift, and a different logarithm map to compute m. This example, along with the

new logarithm map can be found in [87].

Let E be an elliptic curve over F853 defined by the equation y2 = x3+108x+4. Let

P = (0, 2) and Q = (563, 755). Note here that [853]P = O, hence P is a generator

for E(F853). To perform a lift of E we note that can do the following. If we consider

the equations

y2
1 = x3

1 +Ax1 + B

y2
2 = x3

2 +Ax2 + B

where (x1, y1) and (x2, y2) are the lifted points, we can easily obtain solutions for A

and B, namely

A =
y2

2 − y2
1 − (x3

2 − x3
1)

x2 − x1

and B = y2
1 − x3

1 − Ax1.

We now lift E to E and obtain the equation y2 = x3 + 714069x + 4 for E . The

points P and Q are lifted to P = (0, 2) and Q = (563, 755). If we check, we see that

modulo p, P 7→ P , Q 7→ Q and that E 7→ E, hence the required condition of our lift

are satisfied.

Now instead of calculating [p]P and [p]Q as above, instead we separate this into

two calculations: calculate P1 = [p − 1]P ≡ (x′, y′) mod p2 and Q1 = [p − 1]Q ≡

(x′′, y′′) mod p2. We do this to obtain integer coordinates for P and Q. Since p
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should not appear in the denominators of any of the coordinates, these can all be

inverted modulo p2. We then calculate

m = p(
y′ − y1

x′ − x1

) and n = p(
y′′ − y2

x′′ − x2

)

and check to see if the valuation19 of m and n are greater than zero. If the valuation

is greater than zero, we can compute the desired quantity for the ECDLP and hence

λ ≡ m
n

mod p (which is essentially the technique that Smart describes).

Hence in our example we have that

P1 = [852]P ≡ (525448, 365082) mod 8532

Q1 = [852]P ≡ (543924, 505074) mod 8532

and that

m = 853(
365082− 2

525448− 0
) =

45635

77
and n = 853(

505074− 755

543924− 563
) =

504319

637
.

At which point we may now recover a solution for the ECDLP, hence λ ≡ m/n ≡ 234

mod 853, as required.

3.2 Pairing Attacks

3.2.1 The MOV Attack

The MOV attack, named after its developers Menezes, Okamoto and Vanstone, intro-

duced in [61], attempts to reduce the ECDLP on an elliptic curve E(Fq) to the DLP

in a suitable extension Fqk of Fq. The map that is constructed goes from the subgroup

19If a/b is a rational number the p-adic valuation is defined to be vp(a/b) = r, where (a/b) =
pr(a1/b1) with p - a1, b1.

75



generated by P on E to the group of nth roots of unity in Fqk , where n is the order

of the point P . The isomorphism is given by the Weil pairing. The net result of this

map is that we can now solve the DLP in subexponential time using Index Calculus

methods discussed earlier in II.1.6. Unfortunately we have to be careful about the

size of the extension field that we wish to solve the DLP in. Fortunately, the work

done in [61] provided a maximum value of k = 6, this in turn means that the attack

will be effective for certain classes of curves. We discuss these ideas further below.

Let E(Fq) be an elliptic curve with group structure Zn1⊕Zn2 with n2|n1. We will

also assume that gcd(#E(Fq), q) = 1.

Suppose that k is the smallest positive integer such that E[n] ⊆ E(Fqk).

Lemma 4.4 Let E(Fq) be an elliptic curve such that E[n] ⊆ E(Fqk), with gcd(n, q) =

1, and let P ∈ E[n] have order n. Then for all P1, P2 ∈ E[n], P1 and P2 are in the

same coset of 〈P 〉 within E[n] iff en(P, P1) = en(P, P2).

Theorem 4.1 There exists Q ∈ E[n], such that en(P,Q) is a primitive nth root of

unity.

Proof :[61] LetQ ∈ E[n]. From the Weil pairing we have that en(P,Q)n = en(P, [n]Q)

= en(P,O) = 1. Thus en(P,Q) ∈ µn, the subgroup of the nth roots of unity in Fqk .

Now there are n cosets of the subgroup generated by P , and by the above lemma, as

Q varies among the representatives among these cosets, en(P,Q) varies among the

elements of µn.2

Thus if we let Q ∈ E[n] such that en(P,Q) is a primitive nth root of unity we get

the following map and theorem.
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Theorem 4.2 The map

f : 〈P 〉 → µn

R 7→ en(R,Q)

is a group isomorphism.

Proof : The proof is quite easy and was omitted from [61]. We prove it here for

completeness. Clearly f is a homomorphism due to the properties of the Weil

pairing. Suppose that en(R,Q) = en(R
′, Q), then en(R,Q)en(R

′, Q)−1 = 1 ⇒

en(R,Q)en(−R′, Q) = 1 ⇒ en(R − R′, Q) = 1 ⇒ R − R′ = O ⇒ R = R′, thus

f is injective. Now since both 〈P 〉 and µn are finite of order n, this implies that f is

surjective and hence bijective. Therefore 〈P 〉 ∼= µn as required.2

Using all of the above we can now describe the reduction process which will enable

us to solve the instance of the ECDLP.

Let P ∈ E(Fq) be of order n, and R ∈ 〈P 〉. The first thing to do is to determine

the smallest integer k such that E[n] ⊆ E(Fqk). Next we determine an element

Q ∈ E[n] such that α = en(P,Q) has order n. We compute β = en(R,Q). Now we

can determine a solution to the ECDLP by solving an instance of the DLP in Fqk .

That is, we are searching for l such that Q = [l]P on E(Fq), but by using the Weil

pairing and the map from Theorem 4.2 we have successfully turned our ECDLP into

an instance of the DLP, namely β = αl, where there exists subexponential algorithms

to solve this problem.

The above setting can now be used to attack supersingular elliptic curves.
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Definition 4.3 Let E(Fq) be an elliptic curve with q = pm. E is said to be super-

singular if p | #E(Fq) = q+ 1− t. Equivalently if E is defined over Fp with p prime,

then E is supersingular iff #E(Fp) = p+ 1.

In the above reduction we can see that we will encounter two problems. We need

to determine the proper value of k such that E[n] ⊆ E(Fqk) and we need to determine

the point Q ∈ E[n] such that α = en(P,Q) has order n. As is shown in [61] we can

explicitly determine a maximum value of k based on classes of supersingular elliptic

curves. It turns out that if E(Fq) is supersingular, then there are six possibilities that

we can obtain for t20 and that k must be ≤ 6. Determining Q however is a little more

complicated. If one were to choose a random point Q ∈ E[n], then α = en(P,Q) may

or may not have order n. In practice one could attempt to factor n then we could use

this factorization to help find the order of α. This would avoid having to solve several

instances of the DLP and obtaining partial information about the correct value of l

we are attempting to solve for [61].

This algorithm then solves an instance of the ECDLP in probabilistic subexpo-

nential time. The fact that the algorithm is subexponential is clear, since we have

transfered the ECDLP to the DLP we simply apply the fastest known algorithm to

the DLP as discussed in II.1.6. The reason that the algorithm is probabilistic is due

to an algorithm by Miller which calculates the Weil pairing, used in the isomorphism

constructed in Theorem 4.2, in probabilistic polynomial time. Thus the overall com-

plexity of the algorithm is then L[1
2
, qk] if q is prime, and L[1

3
, qk]21, if q is a prime

20[61] gives the six possible values for t along with complete group structures for each value of t.
21Recall the definition of L[α, β] given in II.1.6
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power [61].

3.2.2 The Frey-Rück Attack

The Frey-Rück attack is quite similar in nature to the MOV attack, but uses the

Tate-Lichtenbaum pairing instead of the Weil pairing.

Just like the MOV attack, the Frey-Rück attack attempts to reduce the ECDLP

to the DLP in a suitable extension field over which the elliptic curve in question is

defined, where the DLP can be solved with subexponential algorithms.

We recall the following setup from III.3.3. Suppose that K is a perfect field22,

and that E is an elliptic curve defined over K. Recall that the set of n-torsion points

is denoted E(K)[n]. We further define the following set, let nE(K) = {[n]P | P ∈

E(K)}. Then the Tate-Lichtenbaum pairing is

〈·, ·〉 : E(K)[n]× E(K)/nE(K)→ K×/(K×)n

which is a bilinear, non-degenerate pairing. Note here that the group K×/(K×)n

is isomorphic to the roots of unity µn, thus an instance of the ECDLP on E(K) is

mapped to an instance of the DLP in µn.

Clearly this pairing can then be constructed over finite fields and yields significant

cryptographic applications. Sometimes referred to as the modified Tate-Lichtenbaum

22A perfect field K, is one for which every algebraic extension of K is separable
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pairing [87], we can define τn to be the following bilinear map:

τn(·, ·) : E(Fq)[n]× E(Fq)/nE(Fq) → µn

τn(P,Q) = 〈P,Q〉q−1/n

Although the setting is exactly the same, the second setup is more desirable since

it will yield a definite answer instead of a coset in F×q modulo nth powers. Again since

we are mapping into the group of nth roots of unity, we are mapping into a suitable

extension field Fkq such that µn ⊆ Fkq . Again, as in the case of the Weil pairing, if we

were to apply this to the situation of supersingular curves, we have that k ≤ 6 and

this result in a subexponential algorithm solving the ECDLP.

We present the following algorithm which summarizes both the MOV and the

Frey-Rück attacks.

Algorithm 4.4 MOV/Frey-Rück Attack

Input: P,Q ∈ E(Fq), of prime order r, such that Q = [λ]P, for unknown

λ
Output: The Discrete log λ of Q to the base P

1: Construct the field Fqk such that r | (qk − 1)
2: Choose a point S ∈ E(Fqk) uniformly at random with e(P, S) 6= 1
3: ζ1 ← e(P, S)
4: ζ2 ← e(Q,S)
5: Determine λ such that ζλ1 = ζ2 in F×

qkusing index calculus methods

6: Return λ

3.2.3 Calculating and Comparing the Pairings

So far we have simply described the methods by which these pairings are set up to

attack the ECDLP and the net result of each mapping. In this section we give ways

of calculating each pairing and discuss their relationship to one another.
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Essentially, both pairings reduce to determining a function f such that div(f) =

n(P+R)−n(R) for points P ∈ E[n] and R ∈ E, we would then evaluate f(Q1)/f(Q2)

for points Q1, Q2.

An algorithm, due to Miller, was produced to do this efficiently. Below is a

description of the algorithm that appears in [6].

Algorithm 4.5 Miller’s Algorithm

Input: P,Q ∈ E(K) where P has order n.
Output: 〈P,Q〉

1: Choose a point S ∈ E(K)
2: Q′ ← Q+ S
3: T ← P
4: m← blog2(n)c − 1, f ← 1
5: While m ≥ 0 do:

6: Calculate lines l and v for doubling T.
7: T ← [2]T

8: f ← f 2 l(Q
′)v(S)

v(Q′)l(S)

9: if the nth bit of n is one, then:

10: Calculate line l and v for addition of T and P
11: T ← T + P
12: f ← f l(Q

′)v(S)
v(Q′)l(S)

13: m← m− 1
14: Return f

The functions l and v arise from the fact that we can express the group law

in terms of divisors23. If one were to take two points on an elliptic curve E, one

would normally proceed in the geometric sense by drawing a line connecting the two

points. This line can then be interpreted as a function defined on E. Similarly when

one connects the third point of intersection of the curve to the point of infinity, we

can define the vertical line v in terms of a function as well. Thus adding points

P1 +P2 = P3, with P ′
3 as the intermediate point of P1 +P2, yields divisors of the form

23This is the Riemann Roch Theorem at work here, see [2] and [6].
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div(l) = (P1) + (P2) + (P ′
3)− 3(O) and div(v) = (P ′

3) + (P3)− 2(O).

There are two other concerns: the choice of S and constructing the function f .

One way to choose S is to simply choose a random point in E(K). We can also

set S = [i]P with the condition that i is not a segment in the binary representation

of n. Lastly we could also set S = Q if P ∈ E(Fq) and Q 6∈ E(Fq).

The functions fi can be chosen such that the following properties hold:

1. f1 = 1

2. Let l and v be the straight lines used in the computation of [i]P + [j]P . Then

fi+j = fifj
l
v

We are then ultimately concerned with a value for fn where div(fi) = i(P )− ([i]P )−

(i− 1)(O) [6].

This algorithm runs in polynomial time and has been improved upon in [7], [19],

[20] and [46]; further reducing the running time of computing of the Weil and Tate-

Lichtenbaum pairings.

One might now wonder which pairing to choose when trying to solve an instance

of the ECDLP defined over a supersingular curve. There are a couple of subtle

differences in each pairing, which is a result of the space for which each pairing is

defined. Observe that in the Weil pairing we need E[n] ⊆ E(Fq) which in turn

implies that µn ⊆ F×q . For the Tate-Lichtenbaum pairing we require µn ⊆ F×q , but

only need one point of order n to be in E(Fq), and not the entire group E[n] [87].

Thus the Tate-Lichtenbaum pairing can be used in circumstances where the Weil

pairing does not apply. The Tate-Lichtenbaum pairing is also faster to compute,
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especially with the enhancements listed in the resources above. A summary of some

of these improvements are listed here and can be found, along with a few others, in

[4]:

1. Exploiting properties of the definition of the underlying field

2. Changing the base in the Algorithm

3. Replacing divisors by points

4. Choosing points of Low Hamming Weight

5. Speeding up the final exponentiation.

Note that there also exists elliptic curves which are not supersingular that are

vulnerable to a pairing attack. As an example, observe that for every prime power

q = pα with p > 2, there exists elliptic curves E over Fq with q − 1 points and the

reduction algorithm requires no extension of the base field [6].

With a little more versatility and more efficient implementation techniques, the

Tate-Lichtenbaum pairing is better suited for attempts at solving the ECDLP when

applicable.

Example: Let E be the the elliptic curve y2 + y = x3−x2− 10x+7 defined over

Fq with 1609667 elements. Using Schoof’s algorithm, or the SEA algorithm, it can

be shown that #E(Fq) = 2 × 804833. This makes the trace of the Frobenius equal

to 2 and hence for p = 804833 the pth roots of unity are contained in Fq. This means

that we must apply the Tate-Lichtenbaum pairing instead of the Weil pairing since all

points of order p are not contained in E(Fq) [24]. Let P = (797482, 1369997) ∈ E(Fq),
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which can be shown to have order p = 804833. Let Q = (822050, 1036146). We now

wish to solve the ECDLP, [λ]P = Q.

As described in the previous section, we begin by calculating [p]P and see which

numbers do not occur in this calculation. Very quickly we notice that [5]P and [6]P

do not occur and so we will use these numbers for our divisor. To calculate 〈P, P 〉 we

use the divisors DP = (P ) − (O) and DP ′ = ([6]P ) − ([5]P ). Similarly we calculate

〈Q,P 〉, and use the divisor DQ = (Q) − (O) and DP ′ = ([2]P ) − (P ). When we do

this we obtain the following

τn(P, P ) = 822530(q−1)/p = 1293131

τn(Q,P ) = 824365(q−1)/p = 508028.

Hence we have mapped our ECDLP to the DLP, and so we can solve the following

equation

1293131λ ≡ 508028 mod q

using the Index Calculus discussed in II.1.6. Hence we find that λ = 89865 as

required.

3.3 Weil Descent and the GHS Attack

3.3.1 The Attack

The GHS attack uses a techniques known as Weil Descent in an attempt to solve the

ECDLP on a given elliptic curve defined over F2m
24. The techniques of Weil Descent

24Note that this attack has been extended to elliptic curves defined over fields of odd characteristic
by Diem in [14].
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were first introduced to the cryptographic community in a talk by Frey in [22] at

ECC ’98. Following this, Galbraith and Smart devised a preliminary construction

in [32], and finally Gaudry, Hess and Smart were able to give not only a complete

construction of how to attack an elliptic curve cryptosystem using Weil Descent, but

also attempted to construct hyperelliptic curve cryptosystems using this technique;

a problem that Frey was considering in his original introduction of this subject.

The GHS attack is akin to pairing attacks in the sense that it attempts to reduce

the ECDLP to an easier problem. Instead of reducing the ECDLP to the DLP, we

will now attempt to reduce it to the HCDLP, that is the Hyperelliptic Curve Discrete

Logarithm Problem. The process of reducing the ECDLP to the HCDLP is not a

trivial matter; however it can be shown that the reduction process does not govern

the expected time cost in the algorithm. The governing step in the algorithm is

solving the HCDLP on a hyperelliptic curve. There are many algorithm that can

do this: Index Calculus methods of Hafner-McCurley, or the methods of Enge and

Gaudry for instance. When we discuss methods of solving the HCDLP we will use

the latter method.

As a final note before we begin the description of this attack, we consider when this

attack is thought of as being successful. Since the fastest known algorithm to solve

the ECDLP are the methods of Pollard, the GHS attack is thought to be successful

if the expected running time of the algorithm solves an instance of the ECDLP in

less time then Pollard’s methods. We quantify this a little more. Gaudry was able

to produce an algorithm to solve an instance of the HCDLP with expected running

O(g3q2 log2 q + g2g! log2 q), which becomes impractical for values of g ≥ 10, [43].
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This algorithm was later improved by Gaudry and Enge to yield a subexponential

algorithm with expected running time of Lqg [
√

2] = Lq2g+1 [1] [43]. Thus one can see

immediately that if the resulting hyperelliptic curve obtained in our reduction has

genus which is too large, then the GHS will have longer expected running time then

Pollard’s methods, and hence the attack is considered to have failed.

We first sketch the GHS Attack before giving a detailed description. Given an

elliptic curve E defined over a field Fqn we construct an abelian variety, known as

the Weil Restriction of Scalars of E over Fqn . Next, we find a curve C defined over

Fq lying on our constructed abelian variety, such that C has an Fq-rational point P0

at the point of infinity of the abelian variety. The points P and Q of the ECDLP

in E(Fqn) correspond to divisors D1 and D2 in Pic0(C)(Fq), which is where we will

solve the HCDLP using the methods of Enge and Gaudry.

We will need the following result to get a better handle on the Weil Restriction

of Scalars.

Theorem 4.3 Let A be an abelian variety over a field k and let B be an abelian

subvariety of A. Then there is an abelian subvariety C of A such that A is isogenous

to B × C.

With this result we can construct the Weil Restriction as follows. We first take

a basis for Fqn over Fq, and expand the coordinate functions on the curve E(Fqn)

in terms of the new basis. By substituting into the equation for E, expanding, and

equating the coefficients of the new basis, we obtain a system of n equations in 2n

variables. This then defines our variety WFqn/Fq(E), the Weil Restriction of Scalars
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of E. The group operation on WFqn/Fq(E) is induced by the group operation on the

curve E.

The above theorem now comes into play. There are two cases to consider when

we define WFqn/Fq(E). The following theorem can be found in [32].

Theorem 4.4 If E is defined over Fq then WFqn/Fq(E) ∼= E(Fq) × V , where V is

an abelian variety of codimension 1. If n is coprime to #E(Fq) then V = {P ∈

WFqn/Fq(E) | TrFqn/Fq(P ) = O}, where the trace is computed using the mapping from

WFqn/Fq(E) to E(Fq).

Thus if E is not defined over Fq we set A = WFqn/Fq(E), otherwise set A = V

from Theorem 4.4.

So we can define the abelian variety. What does this give us? Well this gives us

a starting point for finding our hyperelliptic curve which we hope will lead us to a

quicker solution for the ECDLP than Pollard’s methods. What we can do with this

variety is use techniques mentioned in the previous chapter in an attempt to obtain

an equation of a hyperelliptic curve of relatively small genus.

If we can intersect our abelian variety A with dim(A)−1 hyperplanes in standard

position, then by elimination theory this will give us a variety of dimension one. This

in turn will hopefully define an equation for a hyperelliptic curve of genus g where

we would like to solve the HCDLP.

We now elaborate on this sketch. Suppose that we wish to solve the ECDLP

P1 = [λ]P2 on E(Fq). We construct our Weil Restriction of Scalars, as above, and then

find a curve C defined on A. The by the universal mapping property of Jacobians,
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see [32], there is a map ψ : Jac(C)→ A. The points used in the ECDLP correspond

to points on A, which can be pulled back using ψ to divisors D1 and D2 in Pic0(C)

where we solve the problem using Index Calculus methods. One outstanding matter

is description of ψ. The following is proved in [32].

Theorem 4.5 The map ψ : Pic0(C)→ A is given by

ψ(
d∑
i=1

(Qi)− d(P0)) =
d∑
i=1

φ(Qi)

where φ is a map from C to A and each Qi are points on C(Fq).

Inverting ψ requires finding a divisor which maps ψ to a given point, P , on A. To do

this we must find p non-singular points on C, where p is to be determined. We label

these {P1, . . . , Pp}. Now using φ, we maps these points to our variety A and obtain

the following

Qi = φ(Pi), i = 1, . . . , p.

If we think of the coordinates of each of these points as variables, we see that we have

obtained p equations in 2p unknowns.

Using the group law on A we can determine the equations for the coordinates

of the sum
∑p

i=1Qi and then equate this to the given element P on A. Since A

has dimension n we now have another n equations, and thus have a total of p + n

equations in 2p unknowns. Notice that when p > n we expect that the variety to

have dimension at least p − n, hence choosing p large enough will produce a curve,

surface, etc., for which we can find the points Pi that lie on C.

We now construct divisors Di = (Qi)− (P0) in Pic0(C) and thus ψ(
∑p

i=1Di) = P

as required, with different points, P0, on the variety giving rise to different divisors
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Di. Suppose now that we have determined divisors D′
1 and D′

2 such that ψ(D′
1) = P1

and ψ(D′
2) = P2. We now compute Di = [#Pic0(C)(Fq)/#E(Fq)]D′

i and attempt to

solve the discrete logarithm problem in Pic0(C) which yields a solution to the original

ECDLP on E(Fq) [32].

3.3.2 Extending this Attack Using Isogenies

We can extend the GHS using isogenies. Recall that an isogeny is a rational map

φ : E1 → E2 between elliptic curves E1 and E2, and that #E1 = #E2. The idea

behind this is that if we have an elliptic curve, defined over Fq, and we attempt to

solve the ECDLP using the GHS attack, then it may happen that when we obtain

our equation for our hyperelliptic curve, we have obtained one with too large a genus

for the Index Calculus algorithm to be effective in solving an instance of the HCDLP.

We could return to our original curve E and attempt to find an isogeny φ from E to

E1 say such that the GHS will be an effective attack for an instance of the ECDLP

over E1. We would then use φ to solve the ECDLP on E. In [31] the authors not

only give an explicit construction of how to determine φ, but, building on the work

of Galbraith in [27], the authors are able to show that the worst case average running

time for constructing this isogeny is O(q
n
4
+ε) [31]. The implications of determining

isogenies, and effectively increasing the number of curves that can now be attacked

by the GHS is discussed below.
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3.3.3 Implications and Results

This attack is fairly significant. Since this attack is defined for curves defined over

the field F2m ,m ∈ Z, the attack could be applied to many situations of cryptographic

interest since in particular, being defined over F2m yields quick arithmetic operations

and efficient cryptosystems for a given curve E. In particular, there are industrial

standards that allow elliptic curves to be defined over F2155 and F2185 . Analysis done

by Menezes et. al. in [43] and Menezes and Qu in [57] suggests that there is little

chance that an elliptic curve is susceptible to such an attack. In particular they were

able to demonstrate that roughly 1 in 2122 could be attacked using the GHS. However,

work done by Galbraith et. al. in [31] shows that by extending the GHS attack using

isogenies allows a greater number of curves to be attacked by this method. They

were able to improve the original chance that a curve could be attacked from 1 in

2122 to 1 in 252 [31], a significant improvement. This suggests that this field is weak

for cryptosystems. A similar analysis has been done on the field F2185 , which can also

be shown to be weak for cryptosystems. This then raises the question: What fields

are weak when it comes to the GHS or the extended GHS?

Further analysis of what can be called the Generalized GHS, or the extended

GHS, has been done by Menezes and Teske in [59] and gives a thorough answer to

the above question. In [59] the authors are able to characterize fields as follows:

1. The fields F26l , F27l and F28l are weak.

2. The fields F2N where N - 3, 5, 6, 7 or 8 are not weak under the generalized GHS

In particular this analysis, as well as the original construction, shows that if E
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is a curve defined over a field F2p where p ∈ [160, 600] is a prime, then the GHS

attack and the generalized GHS attack do not apply. Thus to avoid this attack in

its entirety, one can simply choose a curve defined over F2p where p is a prime of the

recommended form.

3.3.4 Further Work

When this author first encountered the GHS attack, I wondered why the Descent

technique used hyperplanes in standard position. This brief section explores this in

a little more depth.

At first glance we could potentially carve up our variety A with something other

than hyperplanes in standard position. Perhaps we could use dim(A)−2 hyperplanes,

and a quadratic hypersurface of some sort. Suppose that we did this, does this result

in a variety of dimension one? In other words does the resulting equation define a

curve for which we could solve the ECDLP in its Jacobian? Well, if we intersect our

variety with n−2 hyperplanes in standard position and a quadratic hypersurface, then

by the dimension theorem, the resulting variety should have dimension at least 1. To

ensure that the variety has dimension exactly one, we must choose a hypersurface in

such a manner that it does not vanish on all of A. If we do this then we can intersect

A with any type of surface that we wish. Now the question becomes whether or

not the result is a hyperelliptic curve with low enough genus that subexponential

algorithms can be employed to solve the HCDLP.

Recently, Diem has announced that solving an instance of the DLP in class groups

of plane curves of genus 3 is asymptotically faster than solving the HCDLP in the
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genus 3 case [15]. Diem’s results suggests that these ideas can be exploited even

more. Perhaps it is not essential that the Descent step in the GHS attack result in

a hyperelliptic curve, but instead just any plane curve of low genus. Thus if any

method of intersecting the variety A to obtain a plane curve of low genus could be

employed, the result would then lead to a quicker solution for an instance of the

ECLDP.

The interesting thing here would be to determine if the method of intersecting the

variety with something other than hyperplanes in standard position would result in

an equation for a plane curve with too high of degree, and thus too high of a genus.

I believe that further work is needed in this area.

Example: We divide this example into two sections. The first will demonstrate

the method of Descent that we apply to our abelian variety A, while the second

section will give a concrete example of the transfer of the ECDLP to the HCDLP

omitting the lengthier calculations involved in applying the Descent method to this

example. The first example is due to Smart and Galbraith in [32], while the second

is due to Menezes, Jacobson and Stein in [43].

Example One: Let k = F2n1 and set m = nn1 for some n. Let K be an extension

field of k such that K has an Optimal Normal Basis25 over k. Choosing such a basis

means that n + 1 should be prime and that 2n1 should be primitive in Fn+1. Thus

the nth roots of (xn+1 − 1)/(x− 1) form such a basis of K over k.

For simplicity choose n = 4 and let {θ, θ2, θ4, θ8} be such a basis. Let E be the

elliptic curve y2 + xy = x3 + b where b 6= 0. By writing out b, x and y in terms of

25For details about Optimal Normal Bases consult [5, 22].
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elements of the basis and substituting in this equation, expanding and equating pow-

ers of θ, we obtain four equations in eight unknowns, namely {x0, . . . , x3, y0 . . . , y3}

where xi, yi ∈ k and are the unknown coefficients of x and y when they are expressed

in term of the basis. This defines our abelian variety A, which is a four dimensional

variety in eight dimensional affine space. When we intersect this variety with our

hyperplanes in standard position, x0 = x1 = x2 = x3, we obtain the following variety

y2
3 + y0x0 + x3

0 + b0 = 0

y2
0 + y1x0 + x3

0 + b1 = 0

y2
1 + y2x0 + x3

0 + b2 = 0

y2
2 + y3x0 + x3

0 + b3 = 0

We can then eliminate the variables y3 and y1 by taking the resultant of the first

and fourth equations, and the second and third equations respectively and obtain a

new variety with defining equations

y4
2 + x6

0 + b23 + y0x
3
0x

5
0 + b0x

2
0 = 0

y4
0 + x6

0 + b21 + y2x
3
0x

5
0 + b2x

2
0 = 0.

Lastly we eliminate y2 from these equations and set x0 = x and y0 = y and obtain

the following equation for the affine curve

C : y16 + x15y + (x24 + x20 + x18 + x17 + b0x
14 + b23x

12 + b42x
8 + b81)

Thus an instance of the ECDLP on the original curve E will now be mapped to

C where it can be solved using the methods of Enge and Gaudry mentioned in the

previous section.
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Example Two: Let E be the elliptic curve y2 +xy = x3 +ax+b defined over F2124 ,

where a = z105,

b =

z108 + z106 + z102 + z101 + z99 + z93 + z87 + z85 + z75 + z70 + z68 + z67+

z66 + z62 + z59 + z58 + z56 + z55 + z54 + z53 + z50 + z49 + z48 + z46 + z45

+ z44 + z42 + z41 + z40 + z33 + z32 + z29 + z27 + z24 + z23 + z22 + z20

+ z18 + z16 + z15 + z14 + z9 + z8 + z7 + z3 + z2 + z

and the irreducible polynomial over F2 is z124 + z19 + 1.

It can be shown, that #E(F2124) = 2r where

r = 10633823966279326985483775888689817121.

Let P and Q be points on E for which we wish to solve the ECDLP. In [43] these

points were generated verifiably at random to obtain the following

P = (1916628993111635091489243546096922889,

3954926638115710237279327107877298663)

Q = (14152416137154867042654754006541690809,

15733241592903071723351565426494711869).

Now the challenge is to determine the appropriate λ ∈ [0, r − 1] such that

[λ]P = Q. To do this we apply the Weil Descent method and map the ECDLP

into the Jacobian of a hyperelliptic curve, and attempt to solve the HCDLP. Using

this technique E is mapped to the following curve defined over F24 , with the chosen

irreducible polynomial as w4 + w + 1.

v2+(w3u31 + w9u30 + wu28 + w11u24 + w12u16 + w12)v

= (w6u63 + w14u60 + w6u56 + w6u48 + 1)
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Now we need to calculate divisors in Jac(C(F24)). To do this we choose a point

R of order r and add it to P and Q. When we apply the descent procedure the point

P + R, Q + R and R are mapped to divisors D1, D2 and D3 respectively. In this

example the following point R was used:

R = (11949386922129241854287919257049811485,

13819702817838731027194193290120801107).

While Divisors D1, D2 and D3 are calculated to be

D1 = div(u31 + w6u30 + w4u29 + w5u28 + w10u27 + w3u26 + w14u25 + w4u24

+w14u23 + u22 + w5u21 + w9u20 + w14u19 + w4u18 + w14u17 + w12u16

+w6u15 + w14u14 + w7u13 + w7u12 + w2u11 + w7u10 + w13u9 + w7u8

+u7 + w9u6 + w14u5 + w3u4 + w2u3 + w10u2 + w9u+ 1, u30 + w8u29

+wu28 + w8u27 + w14u26 + w5u24 + w10u23 + w4u22 + w8u21

+w9u19 + w2u18 + w3u16 + w5u15 + w13u14 + w11u13 + w7u12

+u11 + w8u10 + u9 + w2u8 + w6u7 + u6 + wu5 + w9u4 + w13u3 + w2u+ w7),

D2 = div(u31 + w12u30 + w3u29 + w8u28 + w12u27 + w14u26 + w13u25

+w9u24 + w7u23 + w12u22 + u20 + w3u18 + w12u17 + u16 + w12u15

+w3u14 + w9u13 + w6u12 + w9u11 + w7u10 + w2u9 + w8u8 + w11u7 + w9u6

+w12u5 + w10u4 + w11u3 + w11u2 + w11u+ 1, w14u29 + w6u28 + u27

+w11u26 + w11u25 + w4u24 + w14u22 + w5u21 + w3u20 + w14u19

+w5u18 + w2u17 + w8u15 + u14 + w4u13 + w7u12 + w10u11 + w6u10

+w4u9 + w2u8 + w14u7 + wu6 + w11u4 + w11u3 + w2u2 + w9u+ w6),

D3 = div(u31 + w14u30 + w5u28 + u27 + w8u26 + w11u25 + w13u24 + w2u23

+w5u22 + w9u21 + w7u20 + w12u19 + w4u18 + w9u17 + w13u16 + w4u15

+w13u14 + u12 + wu11 + w3u10 + w6u9 + w8u8 + w7u7 + w14u6

+u5 + w5u4 + w9u2 + w7u+ w9, w7u30 + w3u29 + w4u28 + wu27 + w6u26

+w7u25 + wu23 + w6u22 + w7u21 + w9u19 + w9u18 + w2u16 + w5u15

+w2u13 + w5u12 + u11 + w6u10 + u9 + w2u8 + w5u7 + w7u6 + w2u5 + w9u4

+w2u3 + w7u2 + w3u+ w13).
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Hence we have reduced our task to solving (D2−D3) = [λ](D1−D3) in the Jacobian

of C. Applying the Enge -Gaudry method mentioned about we find that the solution

for the HCDLP, and hence the ECDLP is

λ = 289697194482016303350776099807354482

as required.

3.4 The Xedni Calculus

Born from a thought that the Index Calculus would never be an effective attack

against Elliptic Curve Cryptosystems; Joseph Silverman, in 1999, presented a new

attack dubbed the Xedni Calculus, since it stood the Index Calculus on its head.

There was great anticipation surrounding the algorithm. After its introduction, it

was shown, by Koblitz, that if this attack is successful, it could be modified to attack

not only elliptic curve cryptosystems, but also the Digital Signature Standard and

RSA cryptosystems [44]. Thus essentially all public-key cryptosystems would be

threatened.

The original idea was to reproduce an index calculus type of attack on the ECDLP.

The initial setup is as follows. Suppose that we wanted to find a k such that Q = [k]P

on an elliptic curve E over Fp for some prime p. We can than lift E,P and Q to an

elliptic curve E over Z with points P , Q. If we can find k′ such that Q= [k′]P then

we have solved the equation over Fp, ie. Q = k′P . The problem is that in most cases,

the points P and Q are independent and as such, no k′ exists [87, 156]. Thus the

Index Calculus fails to translate to the elliptic curve situation. Silverman, however,
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devised a way around this. One of the difficulties lies in the lifting of the points from

E(Fp) to E(Q). Instead of lifting the points to a curve E(Q) we would instead choose

a curve that goes through the points that had been lifted. We would then look for

relationships among these lifted points. As a result, we obtain a system of linear

equations which we can readily solve; we then convert the curve to Weierstrass form.

The hope is that there would be one or more relations among the set of lifted

points. These relations could then be reduced mod p to obtain relations between

P and Q, and thus solving the ECDLP. Unfortunately, previous work by Néron

and Masser [79] suggests that the set of lifted points will usually be independent.

Silverman then describes further restrictions, what he calls Reverse Mestre Conditions

[79], to hopefully result in a curve E which has smaller rank than expected.

3.4.1 Background

As mentioned by Miller, and elaborated on by Silverman and Suzuki in [80], the Index

Calculus, although a subexponential algorithm to solve the DLP, failed miserably at

attacking ECDLP because of two main drawbacks:

1. Rank/Height Obstruction

2. Lifting Obstruction

Both obstructions are intertwined. The idea is to take a point of E(Fp) and lift it to a

curve E(Q). The problems are that, in the first case, the probability of lifting a point

of E(Fp) to a point E(Q) whose height is bounded by something reasonable is small.

And secondly, there is the problem of actually lifting the point. One possibility is to
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take a point (x, y) ∈ E(Z/pkZ) but there are too many possible choices of lifts of this

point [80].

As it will be seen, the lifting problem that is inherent in the Index Calculus

approach, does not appear in the Xedni Calculus attack. In its place will be the

problem of trying to force lifted points to be dependent so that the ECDLP can be

solved26.

In general theory, the Reduction Modulo p Theorem gives us a way from passing

from an elliptic curve defined over Q to that of a curve defined over the finite field Fp

for some prime p. The map is a well-defined homomorphism from E(Q) → E(Fp).

The trouble is working our way back from E(Fp) to E(Q). As mentioned above, there

are many possibilities for the point P to be lifted to. Instead we are now presented

with the task of lifting a set of given points, simply choosing a representative for

them, then forcing a curve to pass through these points. The lifting of these points

is the easier of the two problems. Forcing a curve through the lifted points is quite

technical, and requires a more intimate knowledge of linear algebra as well as exact

sequences. This information can be found in [79, Appendix B].

Step 6 of the algorithm below will require a lifting of points in P2 modulo p and

modulo M to a point in P2(Q). Given a point Ri = [αi, βi, γi], 1 ≤ i ≤ I, with integer

coordinates, we want to find a corresponding point R = [α, β, γ] such that

R ≡ Ri mod mi in P2 ∀ 1 ≤ i ≤ I.

26this will appear in Step 7
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We will assume that the mi’s are pairwise relatively prime and we will take m =∏I
j=1mj. The first step is to use the Chinese Remainder Theorem to find integers

a, b, c that satisfy

a ≡ αi mod mi, b ≡ βi mod mi, c ≡ γi mod mi, ∀ 1 ≤ i ≤ I.

This gives us a point in P2(Q) with the desired property. Following this we consider

the lattice generated by the columns of the matrix
a m 0 0

b 0 m 0

c 0 0 m

 .

We then find a vector [α, β, γ] in this lattice. Note that this vector should satisfy

[α, β, γ] ≡ d[a, b, c] mod m

for some integer d, so that [α, β, γ] and [a, b, c] represent the same point in P2(Q). If

gcd(d,m) = 1 then they reduce to the same point and we are done. Otherwise, we

find a basis for the kernel of the matrix and us it to adjust [a, b, c] [79].

A second, quite technical aspect, is Silverman’s idea of employing Reverse Mestre

Conditions, to obtain a greater probability of gaining dependence among the r lifted

points. Mestre devised a way to obtain elliptic curves of higher than expected rank.

Conversely, Silverman would like to apply Mestre’s formula in reverse, so to speak, to

obtain a curve of smaller than expected rank, hence obtaining a dependency relation

among the r points. Mestre used congruence conditions modulo l, for small primes

l, to force the quantity

#E(Fl) = l + 1− al(E)
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to be large. Here al(E) are the Fourier coefficients of E over Q. This idea is based

on the Birch and Swinnerton-Dyer conjecture27. If E(Q) has high rank, then the

point on the curve should be sparse modulo l to force E(Fl) to be large. Silverman is

now concerned with making al(E) to be as large as possible for small primes l thus

making the quantity #E(Fl) smaller and increasing the likelihood that the curve has

smaller than expected rank (hopefully ≤ r − 1).

3.4.2 The Algorithm

Step 1

Fix an integer 4 ≤ r ≤ 9 and an integer M which is a product of small primes. We

shall assume that the characteristic of the field p - M . Here r is the number of points

to be lifted, where M is the product of primes for which the reverse Mestre conditions

will be imposed.

Step 2

For any set of r triples, Pi = [xi, yi, zi], 1 ≤ i ≤ r, define an r-by-10 matrix B =

B(P1, . . . , Pr) of cubic polynomials as

B =



x3
1 x2

1y1 x1y
2
1 y3

1 x1y1z1 y2
1z1 x1z

2
1 y1z

2
1 z3

1

x3
2 x2

2y2 x2y
2
2 y3

2 x2y2z2 y2
2z2 x2z

2
2 y2z

2
2 z3

2

...
. . . . . .

...

x3
r x2

ryr xry
2
r y3

r xryrzr y2
rzr xrz

2
r yrz

2
r z3

r


27for more information about this consult [44]
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We choose r points

PM,i = [xM,i, yM,i, zM,i], 1 ≤ i ≤ r,

having integer coefficients and that satisfy:

1. the first 3 points are the triangle of reference and the 4th point, the unit point:

[1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1].

2. for every prime l|M , the matrix B(PM,1, . . . , PM,r) has maximal rank modulo l.

We further choose coefficients uM,1, . . . , uM,10 so that the points PM,1, . . . , PM,r

satisfying the congruence:

uM,1x
3 + uM,2x

2y + uM,3xy
2 + uM,4y

3 + uM,5x
2z

+ uM,6xyz + uM,7y
2z + uM,8xz

2 + uM,9yz
2 + uM,10z

3 ≡ 0 mod M.

(4.3)

Observe that from condition 1 above we have that uM,1 = uM,4 = uM,10 = 0 and

all the other coefficients will sum to zero modulo M . The idea is to make these choices

so that equation (4.3) has the smallest number of solutions modulo M subject to the

above conditions. Also for any particular prime l, imposing these conditions to force

equation (4.3) to have a small number of solutions modulo l is quite simple. We can

then use the Chinese Remainder Theorem to find the values of the uM,i’s modulo M .

Now the choices of the points PM,i’s must be made with a certain level of care

since they may impose certain constraints on the linear relations satisfied by the lifted

points.
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Step 3

We now choose r random pairs of integers (si, ti) satisfying 1 ≤ si, ti ≤ #E(Fp) and

for each i ∈ [1, r], compute the points Pp,i = (xp,i, yp,i) defined by

Pp,i = [si]S − [ti]T ∈ E(Fp).

Notice here that we can assume that Pp,i 6= 0 and Pp,i 6= ±Pp,j for all i 6= j otherwise

the ECDLP is solved.

Step 4

Working in the projective space P2, we can make a change of variables of the form
X ′

Y ′

Z ′

 =


α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3




X

Y

Z

 (4.4)

Under this transformation we have that the first four points correspond to the

triangle of reference and the unit point, that is Pp,1 = [1, 0, 0], Pp,2 = [0, 1, 0], Pp,3 =

[0, 0, 1] and Pp,4 = [1, 1, 1]. The equation of our new curve E over Fp then has the

following form:

up,1x
3 + up,2x

2y + up,3xy
2 + up,4y

3 + up,5x
2z

+ up,6xyz + up,7y
2z + up,8xz

2 + up,9yz
2 + up,10z

3 = 0

Recall that in Step 2 we actually have that up,1 = up,4 = up,10 = 0 and all other

coefficients sum to zero modulo p. Notice that the matrix in (4.4) is easily computed

by solving a system of 8 homogeneous equations in 9 variables over Fp. If the system
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is incompatible then three of the four points Pp,1, Pp,2, Pp,3, Pp,4 will be collinear, and

will sum to O on E(Fp), in which case we have solved the ECDLP.

Step 5

A quick step. Simply use the Chinese Remainder Theorem to find integers u′1, . . . , u
′
10

satisfying

u′i ≡ up,i mod p and u′i ≡ uM,i mod M ∀ 1 ≤ i ≤ 10

Step 6

We lift the chosen points to P2(Q). Choose the points

Pi = [xi, yi, zi], 1 ≤ i ≤ r

with integer coordinates satisfying

Pi ≡ Pp,i mod p and Pi ≡ PM,i mod M ∀ 1 ≤ i ≤ r. (4.5)

Now, we can take P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1] and P4 = [1, 1, 1]. Also

the congruences in (4.5) all take place in P2, and can be solved using the Chinese

Remainder Theorem, then by an extended gcd-type algorithm to find all solutions

with small coordinates [79].

Step 7

Let B = B(P1, . . . , Pr) be the matrix of cubic monomials defined earlier, and consider

the system of equations

Bu = 0. (4.6)
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We now find a small integer solution u = [u1, . . . , u10], to which (4.6) has the property

that

u ≡ [u′1, u
′
2, . . . , u

′
10] mod M, (4.7)

where u′1, u
′
2, . . . , u

′
10 are the coefficients that were computed in Step 5 of the algo-

rithm.

Let Cu denote the associated cubic curve

Cu : u1x
3 +u2x

2y+u3xy
2 +u4y

3 +u5x
2z+u6xyz+u7y

2z+u8xz
2 +u9yz

2 +u10z
3 = 0.

Now, by construction we have three facts

• formula (4.5) in Step 6 ensure that the points P1, . . . , Pr are lifts of the original

points Pp,1, . . . , Pp,r.

• formula (4.7) in Step 7 ensure that the curve Cu is a lift of the original curve

E(Fp)

• formula (4.6) in Step 7 ensures us that Cu contains the points P1, . . . , Pr[79].

Thus the lifting problem no longer appears in the Xedni Calculus. Unfortunately,

there’s a new problem, namely trying to force the lifted points to be dependent.

There is also a question of existence of a solution here. Notice that the existence of a

solution for (4.6), satisfying (4.7), is guaranteed by condition 2 in Step 2 and a small

algebraic lemma, see [79] for these details.
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Step 8

We can now make a change of coordinates to put Cu in standard Weierstrass form

using P1 = [1, 0, 0] as the point at infinity. The resulting equation is given as

Eu : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1 . . . , a6 ∈ Z. Let Q1, . . . , Qr denote the images of P1, . . . , Pr under this

change of coordinates, and ∆(u) be the discriminant of Eu.

Note that there is a possibility that the coefficients of Cu are very large, so that

there is a possibility of running through the rest of the algorithm without finding an

explicit equation for Eu.

Steps 9 & 10

Now these two sections appear as optional in Silverman’s original algorithm, and I

will omit them here, but not without a summary. They can be found in their entirety

in [79].

Step 9 involves deriving a new curve Ev and computing the discriminant of this

curve. If |∆(v)| is smaller than |∆(u)| then replace u by v and repeat. This would

lead to an elliptic curve with a locally minimized discriminant.

Step 10 involves computing a sum for which we obtain a value that may allow us

to return to Step 2 or 3, as we see fit. The idea of computing the sum is to give us the

idea of the rank of the curve, and is based on the formulas due to Mestre. Silverman

points out that if the sum is too small then we would discard the curve and return
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to a previous step and search for another curve. This is what Silverman refers to as

Reverse Mestre Conditions.

Step 11

We now have to check if the new points Q2, . . . , Qr ∈ Eu(Q) are independent. If they

are independent, we return to Steps 2 or 3. Otherwise we compute the relationship

of dependence

n2Q2 + n3Q3 + · · ·+ nrQr = O

and we can now set

n1 = −n2 − n3 − · · · − nr

and we can continue on to the next step.

Before we continue to the next step, we make the observation that there are two

ways to perform this step. The Descent Method chooses a set of primes, say P , and

looks at the map

Eu(Q)/2Eu(Q)→
∏
p∈P

Eu(Fp)/2Eu(Fp) ∼= FK2

and uses quadratic reciprocity and linear algebra over F2. The second method is the

Height Method which computes the determinant of the canonical height regulator

〈Qi, Qj〉2≤i,j≤r, and uses LLL to find a linear relation on the columns. Silverman

points out that this method may be the faster of the two, but may fail to terminate

if the points are dependent [79, 10].
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Step 12

We compute two values

s =
r∑
i=1

nisi and t =
r∑
i=1

niti

Recall that the si’s and the ti’s were chosen in Step 3. Now if the gcd(s,#E(Fp)) > 1,

we return to Steps 2 or 3. Otherwise we may compute an inverse of s modulo #E(Fp).

Then ss′ ≡ 1 mod #E(Fp) and we have that

logT (S) ≡ s′t mod #E(Fp)

and the ECDLP is now solved. Of course we should still check to see if S = [m]T

in E(Fp) with m ≡ s′t mod #E(Fp). Since there is a possibility that the system in

(4.6) had less than maximal rank modulo p, we could have arrived at an incorrect

value for m.

3.4.3 Analysis and Conclusion

In experiments conducted at the University of Waterloo, shortly after the Xedni

Calculus attack was announced, it was determined that the attack was impractical

for large primes p used in elliptic curve cryptography. Properties of the canonical

logarithmic height show that the coefficients in a dependency relation among the

lifted points are bounded by an absolute constant [44], which implies a running time

of O(p). More can be said about this constant.

Theorem 4.6 Under certain assumptions, there exists an absolute constant C0, such

that the probability of success of the Xedni algorithm in finding a discrete logarithm
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on an elliptic curve over Fp is less than C0/p.

The problem was that the constant C0 was fairly large. So that if both C0 and

p were large their ratio would be close to one and the algorithm could be worth

implementing.

Lemma 4.5 [44] Assume that log |D| ≥ C1maxi=1,...,r ĥ(Qi) for the lifted curves in

the Xedni algorithm, where D is the discriminant of the lifted curve, Qi the lifted

points, ĥ is the canonical height logarithm, and C1 is a positive constant. Then under

Lang’s conjecture, if the lifted points are dependent, they satisfy a nontrivial relation

with coefficients bounded above by an absolute constant C2.

Using the lemma and the conjecture by Lang, the group working on determining

the running time of this algorithm were able to show that the above theorem does

hold. This shows that any relation among the lifted points Qi can be reduced modulo

p to get a relation among the original points Pp,i that were constructed at random in

Step 3, and that it is unlikely that the random points on E(Fp) will satisfy any linear

relations with coefficients less than a certain constant bound [44]. Thus subject to

various largely proved conjectures, the Xedni algorithm must be repeated at least

O(p) times in order to solve the ECDLP.

The group was also able to show that the probability of finding a lifting of points

with dependency decreases as the discriminant of the curve increases. Thus taking

p in the proper range for practical cryptographic purposes severely decreases the

probability of finding such a lifting. It also turned out that when applying the
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so called reverse Mestre conditions, the discriminant of the given curve increased

drastically, doing more harm than good.

3.4.4 Further Results

A publication by Heon et. al. [9], produced an alternative algorithm to compute

dependencies among the lifted points. They showed that if one could then lift the

set of points to an elliptic curve over Q such that the curve had rank one, then the

attack would be very efficient, and the ECDLP could readily be solved. Although the

algorithm proved to be efficient, the road block of finding a lifting to a curve of rank

one stood in their way. To determine the possibility of lifting to a curve of rank one,

the authors used data from Brumer, about the rank distribution [47], with |∆| prime.

The results were a step in the right direction. If one were to take an arbitrary elliptic

curve over Q, one would expect it to have rank one. Unfortunately, since we were

considering elliptic curves with large rational points, the rank of the lifted curve was

generally higher than expected. On the other hand, if a curve has a non-trivial point

of order two, its rank is bounded by the number of ’bad’ primes [47]. The thought

was then to use a theorem to possibly bound the rank of a curve.

Theorem 4.7 Let

E : y2 = x(x2 + ax+ b), a, b ∈ Z

be an equation of an elliptic curve. Let w(x) denote the number of distinct primes

dividing x. Then

rank(E/Q) ≤ w(b) + w(a2 − 4b)− 1
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If a and b could be chosen such that b and a2 − 4b are prime, then rank(E/Q) ≤ 1.

Thus choosing these quantities to have distinct prime factors, or as few as possible,

can reduce the rank of the lifted elliptic curve. Unfortunately this idea seemed to

terminate without any real conclusions28.

It was also interesting to find that within articles [9] and [47], the authors were

able to show that the lifting problem, lifting points on E(Fp) to E(Q), for p an

odd prime and p = 2n for some n, implies the ECDLP. Not only does the lifting

problem imply the ECDLP, but it was also shown to imply the DLP and the Integer

Factorization Problem [47, 10].

3.5 Semaev’s Summation Polynomials

In this section we examine an idea present by Semaev in [71]. Although the approach

is incomplete, the author was able to determine that this approach yields a solution

to the ECDLP in polynomial time, and subexponential time for larger inputs.

We will assume that we wish to solve the following instance of the ECDLP. Let

E be an elliptic curve defined over Fp of p elements by the equation

Y 2 = X3 + AX +B. (4.8)

Let P,Q ∈ E(Fp) such that [n]P = Q for some n ∈ Z.

The idea behind the Summation Polynomials is to find bounded solutions to

explicit modular multivariate polynomials29 [71]. So let E be an elliptic curve defined

28the authors conclude the article with a discussion of an ongoing experiment about a family of
elliptic curves that contain at least two lifted points. Unfortunately they cannot determine which
curves are of rank one [47].

29For a treatment of modualr functions, see [78].
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over a finite field K of characteristic 6= 2, 3. For n ≥ 2 ∈ N, we define the polynomial

fn = fn(X1, X2, . . . , Xn) in n variables which will be related to the group operations

on E. fn will be defined by the following properties: let (x1, x2, . . . , xn) ∈ K, then

fn(x1, x2, . . . , xn) = 0 iff there exists y1, y2, . . . , yn ∈ K such that (xi, yi) are on E

and (x1, y1) + (x2, y2) + · · · + (xn, yn) = O on E(K). The polynomials fn are then

what are called the Summation Polynomials.

The following theorem defines and lists further properties that the Summation

Polynomials have. The proof is omitted here, but can be found in [71].

Theorem 4.8 The polynomial fn may be be defined by f2(X1, X2) = X1 −X2, and

f3 = (X1−X2)
2X3−2((X1+X2)(X1X2+A)+2B)X3+((X1X2−A)2−4B(X1+X2)),

where A and B are coefficients of (4.8), and

fn(X1, X2, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)),

for any n ≥ 4 and n− 3 ≥ k ≥ 1.

The polynomial fn is symmetric and of degree 2n−2 in each variable Xi for any

n ≥ 3.

The polynomial fn is absolutely irreducible and

fn(X1, . . . , Xn) = f 2
n−1(X1, . . . , Xn−1)X

2n−2

n + . . . ,

for any n ≥ 3.

Now, let us look at what happens when we use these polynomials in our attempt

to solve the ECDLP from above. Fix n ≥ 2. Let R = (x, y) = [w]P + [v]Q, for some
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random w, v ∈ Z. Now consider the equation

fn+1(x1, . . . , xn, x) ≡ 0 mod p (4.9)

in variables x1, . . . , xn. Then with high probability [71], (4.9) has a solution, say

x0
1, . . . , x

0
m, where x0

i are integers bounded by p
1
n

+δ for some δ > 0 or x0
i are rational

numbers where the numerator and the denominator are bounded by p
1
2n

+δ. This

would then imply that we have found a relation

(x0
1, y

0
1) + · · ·+ (x0

n, y
0
n) = [w]P + [v]Q (4.10)

for some y0
1, . . . , y

0
n ∈ Fp or Fp2 .

We could then combine the relations from (4.10) with the relation from a second

summation polynomial, say fm, with m ≥ n, which yields (x1, y1)+. . . (xm+ym) = O,

according to Theorem 4.8, and

fm(x1, . . . , xm) ≡ 0 mod p. (4.11)

Thus finding a bounded solution to both (4.11) and (4.10) yields a solution to the

ECDLP over on E(Fp). The overall complexity of this would be

tp,np
1
n

+δ + p
2
n

+2δ,

where tp,n is the time complexity for finding a bounded solution to both (4.11) and

(4.10) [71].

There are a few unanswered questions that we must address.

1. One should avoid the trivial solutions to both (4.11) and (4.10) like

x1, x1, , x2, x2 . . . , xk, xk, which is always a solution to (4.11), where m = 2k

[71].

112



2. There is concern about a solution y0
i being in Fp2 . Suppose that this is the case.

Then sum of all such points in (4.10) is a point of order two in E, and so being

in Fp2 is not important.

3. How do we find a solution to (4.9)? As of now, no such algorithm exists.

It would be interesting to see if one could describe an algorithm that would

solve such a system of equations. Also, since one needs about p
1
n

+δ nontrivial

solutions in order to solve the ECDLP [71], one would expect that this could

lead to difficulty in solving the ECDLP in a satisfactory amount of time.

4. Lastly the value for tp,n is unknown. Since the question above is not fully

answered, then neither is the value of its expected running time. However, there

exists modular multivariate polynomials for which a bounded solution may be

found in polynomial time or even in subexponential time [71]. This then gives

hope that an algorithm may be produced to yield solutions to (4.11) and (4.10)

which would yield a very good time complexity for an overall algorithm. The

authors of [60] and [71] both speculate that this may produce an algorithm

whose expected running time is faster than Pollard’s methods.

3.6 An Index Calculus for Abelian Varieties

This section explores a recent development in methods of attacking the ECDLP. This

attack is the first of its kind: it is the first known algorithm that solves the ECDLP

in subexponential time. All other subexponential running algorithms have transfered

the ECDLP to another problem, either the DLP or HCDLP, and have not directly
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solved the ECDLP in subexponential time.

This attack will use a few ideas that we have already seen. In particular it relies

on Gröbner basis and Resultant calculations. When we transfer the idea from the

general case to the specific case of an elliptic curve, an abelian variety of dimension

one, we will use Semaev’s Summation Polynomials to ease some calculations30.

The main result of this section is the following:

Theorem 4.9 [36] Let n be a fixed integer and let q be a prime or prime power

which grows to infinity. There exists an algorithm that can solve a discrete logarithm

problem on any elliptic curve over a finite field with qn elements in time O(q2−2/n)

up to constant logarithmic factors in q and where the constant depends on n.

Unfortunately the hidden constant in the big-O notation depends on n and grows

very rapidly as n increases, so in particular this attack is applicable only for elliptic

curves defined over small extension fields. Hence in practice we can avoid this attack

by choosing to use elliptic curves over F2p for p ∈ [160, 600] where p is prime and Fp

for large primes p.

We first give a description of this process in the general sense on any abelian

variety, then give the explicit description relating to elliptic curve, followed by a

complexity analysis.

Let A be an abelian variety with P and Q on A and Q multiple of P . We start by

computing linear combinations R = [a]P +[b]Q for random integers a and b bounded

by the order of the subgroup generated by P . We will attempt to decompose R on

30Recall that although the polynomials were defined, there was no full algorithm to attack the
ECDLP.
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a factor base using a Gröbner basis calculation. If we get a solution, then we store

it as a relation. It is possible to get more then one solution for a single R, in this

case we simply get more relations. After having collected more relations than the

cardinality of the factor base, we use some linear algebra on the relations in the hope

that we generate a non-trivial linear combination of P and Q. When we obtain this

nontrivial linear combination we can solve the ECDLP.

There are now three things we must describe a little more in detail. First, we will

need to know how to perform operations on A; this requires an explicit description

of A. Second, we need to know how to define a factor base, and determine its order.

Lastly, we need to know how we decompose a point on the factor base. We now

describe these ideas in more detail.

3.6.1 A Representation

Let A be an abelian variety of dimension n defined over Fq. We will work with an

explicit embedding in the affine plane of dimension n+m. P ∈ A can be represented

by n+m coordinates, P = (x1, . . . , xn, y1, . . . , ym), where xi, yi ∈ Fq. We can do this

for almost all points in A, we can also assume that for each choice of x1, . . . , xn ∈ Fq

there exists only finitely many y1, . . . , ym ∈ Fq such that these n +m-tuples yield a

point in A [36].

The coordinates (xi, yi) of a point on A will satisfy some equations which form a

triangular set: the first equation being a polynomial in y1 and the xi’s, the second in

y1, y2 and the xi’s, and so on until the last equation is a polynomial in all coordinates.

This system has m equations and locally defines A [36].
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3.6.2 The Factor Base

We define the factor basis as follows:

F = {P ∈ A ∩H1 ∩H2 ∩ . . . ∩Hn | P ∈ Fq}

where Hi is the hyperplane of the equation xi = 0.

Then F = {(x1, 0, 0, . . . , 0, y1, . . . , ym) | x1, yi ∈ Fq} is an algebraic variety of

dimension one, and is a non-empty union of curves [36]. The number of curves

and their genus are bounded, independently of q, by the degrees of the yi’s in the

triangular set of equations for A. We also know how many elements are in F . From

Weil’s bound, #F = q +O(
√
q) [36].

3.6.3 Decomposing a Point

To decompose a point over F , we need to answer the following questions: Let P be a

point on A. Are there points P1, P2, . . . , Pn ∈ F such that

P =
n∑
i=1

Pi,

and how do we compute all the solutions?

Let Gn be the nth symmetric group, and define the map f : Fn/Gn → A by

f : (P1, P2, . . . , Pn) 7→
∑n

i=1 Pi. Hence the nth symmetric group is acting on points

in our factor base.

Since the group law on A is defined by rational functions in terms of the coordi-

nates there exists n+m explicit rational functions such that

n∑
i=1

Pi = (ϕ1(P1, P2, . . . , Pn), . . . , ϕn+m(P1, P2, . . . , Pn))
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The net result of this map is a system of more equations than unknowns, and will

generally have a finite number of solutions over Fq.

For a given point P , finding all these solutions can be done via a Gröbner basis

calculation, followed by a factorization of a univariate polynomial, whose degree is

bounded by the degree of the ideal defined by all the equations in the system [36].

3.6.4 Overall Complexity

Notice that when we decompose a point P , we are simply computing the number of

pre-images f−1(P ). The expected number of pre-images is

∑
P∈A

#f−1(P )

#A
=

1

#A
#(Fn/Gn).

By using the estimate that #A ≈ qn, we get that the expected number of relations

is approximately 1
n!

[36].

We can now look at the overall complexity of this algorithm, at least if we assume

that the parameters of A remain fixed and q tends to infinity. Notice that the point

decomposition process can be done in polynomial time in log(q). This is due to the

fact that we need to check that the ideal obtained from this process is of dimension

zero and Gröbner basis computations can be done in the size of Fq [36]. We also

need around O(q) operations to collect the 1
n!

relations which were constant since the

parameters of A were constant, and solving the relations for a solution takes O(q2)

operations using Lanczo’s methods for sparse linear algebra systems [36].

Thus the complexity can be deduced as being O(q2−2/n) [36]. Notice that for

n = 3 we have that a DLP can be solved in O(q4/3) compared to Pollard’s Rho which
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yields O(q3/2).

3.6.5 Transfer to Elliptic Curves

The above procedure may not be completely obvious in the general setting so we

transfer the case to the specific setting of elliptic curves. The methods discussed in

previous sections, III.4, III.5, IV.3.5, and IV.1.3 will all be used in this attack.

Let E be an elliptic curve over Fqn given by the equation y2 = x3 + ax + b.

We choose an explicit basis representation for the elements in Fqn over Fq; in other

words we select a monic irreducible polynomial over Fq so that Fqn = Fq[t]/(f(t)).

We then form the Weil Restriction A of E as the set of 2n-tuples of elements

(x0, . . . , xn−1, y0, . . . , yn−1) in Fq such that x = x0 + x1t + . . . + xn−1t
n−1 and y =

y0 + y1t + . . . + yn−1t
n−1 are the coordinates of a point in E. Notice that since the

group law is inherited from E, A is indeed an abelian variety. The factor base will

contain points that are on E whose x-coordinate lie in Fq, that is F = {P = (x, y) ∈

E | x ∈ Fq}.

To decompose over the factor base we must write down a very large system of

equations and solve it using a Gröbner basis calculation. The decomposition step

is made easier with Semaev’s Summation Polynomials. Recall their definition from

Section 3.5. Let R be a point of E, which we want to write as a sum of P1, . . . , Pn,

whose x-coordinate is in Fq. We denote this as xP = x0 + x1t+ . . .+ xt−1
n−1, which in

turn requires us to solve

fn+1(xP1 , xP2 , . . . , xPn , xR) = 0
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where xR is known. We now rewrite this equation allowing t to enter the game, and

we reduce modulo f(t) to obtain an equation of the form

n−1∑
i=1

ϕi(x0,P1 , . . . , x0,Pn)ti = 0

which gives us n equations in n indeterminates [36]. We then apply Buchburger’s

algorithm to find solutions to this system.

If we find a solution defined over Fq then we simply look for rational roots of the

corresponding polynomial to find the x-coordinate for Pi.

Below is an example of how this process works. This example can also be found

in [36].

Example: Let p = 1019. The polynomial f(t) = t2+1 is irreducible over Fp, thus

Fp2 ∼= Fp[t]/(t2 + 1); that is the quotient of the polynomial field Fp[t] and the ideal

generated by the irreducible polynomial f(t). Define E over Fp2 by y2 = x3 + ax+ b

with a = 214 + 364t and b = 123 + 983t. Note here that it can be shown that E has

prime order 1039037. Let P = (401+517t, 885+15t) and Q = (935+210t, 740+617t).

We now want to solve the ECDLP [λ]P = Q.

To define the factor base, we let F be the set of points whose x-coordinate lie

in Fp (note that this follows with our definition of the factor base from above).

This factor base can be shown to have 1011 elements. Now we test random linear

combination of P and Q to see if they can be written in terms of elements of F . This

is where we will make use of Semaev’s summation polynomials to ease calculations.

Suppose that we computed R = [459328]P + [313814]Q = (415 + 211t, 183 + 288t).

If R = P1 + P2 for points P1, P2 ∈ F then by Semaev’s Summation polynomials we
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have that f3(x1, x2, xR) = 0 (this is simply checking that the sum of these points is

the point at infinity). If we define m = x1 + x2 and n = x1x2 we obtain the following

equation:

(m2 − 4n)x2
R − 2(mn+ am+ 2b)xR + a2 + n2 − 2an− 4bm = 0.

Hence we have an equation that relates quantities in Fp2 and has two unknowns which

lie in Fp. We now use our knowledge of the structure of Fp2 to relate this into an

equation over Fp, that is we substitute for a and b and reduce modulo f(t). When

we do this we obtain the following equation,

(881m2+597mn+31m+843n+669)t+(329m2+189mn+971m+n2+294n+740) = 0.

For this equation to hold true, the coefficients of t must be zero, hence we obtain

two equations in two unknowns over Fp. We can solve this system using a Gröbner

basis calculation which yields the solution (m,n) = (845, 1003). From this pair we

can solve for x1 and x2 by solving the relation(x− x1)(x− x2) = x2 −mx+ n. From

this we find that x1 = 92 and x2 = 753. Once we have these, we can determine the

corresponding y values for our points P1 and P2 in our factor base. Thus we find that

P1(92, 779 + 754t) and P2 = (753, 628 + 629t).

We now have to repeat this process until we obtain more relations than elements in

our factor base; that is until we have 1012 relations collected. After producing this

many relation we solve a linear algebra system to get a non-trivial combination of

points P and Q that is zero, which allows us to solve the ECDLP. After solving such

a system we determine that λ = 76982, hence [76982]P = Q as required.
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3.6.6 Conclusion

The algorithm presented here has limitations that can trivially be avoided when

constructing cryptosystems for everyday use. Since this algorithm has a running

time of O(q2−2/n) for a small fixed n, we can simply rule out the possibility of using

elliptic curves defined over small extension fields. Notice that in the case of elliptic

curves since we used Semaev’s Summation Polynomials, which were of degree 2n−2,

the hidden constant in the big-O notation depends very badly on n, hence as n grows

this attack becomes impractical.

3.7 Conclusions

Below is a table summarizing the results obtained for the specialized attacks. The

Anomalous Curve case runs in polynomial time while the rest of the attacks run in

subexponential time, with the exceptions being the Xedni Calculus and the Sum-

mation polynomial attack. Each attack however can be addressed and eluded quite

easily when constructing cryptographically strong elliptic curve cryptosystems, the

subject of our next chapter. Almost immediately we can determine a pattern for

good and bad curves: #E(Fp) should not be close to p, and if elliptic curves are

to be defined over an extension field, either F2m or Fpm then m must be sufficiently

large, and preferably prime.
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Attack Expected Running Time Can be

Applied When

Anomalous Curves O(ln p) #E(Fp) = p

MOV/Frey-Rück Lq[
1
2
, c] #E(Fpm) = pm + 1− t where p | t

and n | pmk − 1, 1 ≤ k ≤ 6

Weil Descent O(q
n
4
+ε) Fqm ,

m not prime

Xedni Calculus O(p) always,

but not feasible

Semaev’s Summation O(tp,np
1
n

+δ + p
2
n

+2δ) algorithm incomplete

Polynomials

Index Calculus for O(q2−2/n) when E is define

Abelian Varieties over Fqn with small n

Table 4.4: Expected Running Times of the Specialized Attacks on the ECDLP
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5 Generating Cryptographically Strong Elliptic

Curves

1 Introduction

With several attacks on elliptic curve cryptosystems having been discussed and an-

alyzed we now turn our attention to constructing cryptographically strong elliptic

curves. Notice we did not use the term cryptographically secure. This is mainly due

to the fact that new attacks continue to be developed to attack these systems by

exploiting various properties of elliptic curves. To this point we can simply hope to

generate strong curves that resist all known attacks; there is nothing that guarantees

that they will resist future attacks.

There are currently two main methods in generating elliptic curves for use in

cryptography. The first is simply generating curves at random then running them

through a series of tests to see if they satisfy certain properties. The second is a

method that is called Complex Multiplication(CM). This second method builds a

specific elliptic curve with certain properties already built in.

In addition we remind the reader what we have done so far. The attacks that we

have just analyzed now defined certain security constraints that we must adhere to
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in order to ensure a cryptographically strong elliptic curve. From the general attacks

we see that #E(Fq) must be divisible by a large prime l, with l > 2160. This provides

maximum resistance against both the Pohlig-Hellman attack and Pollard’s methods.

Also from the specialized attacks, we know that #E(Fq) 6= q, q + 1 which avoids

the Anomalous curve attack and the MOV, and in general to avoid the Frey-Rück

attack we should make sure that l does not divide qk − 1 for 1 ≤ k ≤ 20. This

condition ensures that the DLP in F×
qk is intractable. To avoid the GHS attack and

Gaudry’s Abelian Variety attack, we could simply choose a curve over F2p for a prime

p ∈ [160, 600].

The Xedni Calculus, and Semaev’s Summation Polynomials do not currently ap-

ply. The Xedni Calculus was shown to have an expected running time of O(p) for

the prime p in question, which for cryptographic purposes makes this an exponential

running time. Semaev’s attack is, as of today, incomplete. Although the algorithm

has a promising expected running time, there is no full algorithm to solve the ECDLP

here. Hence we do not concern ourselves with these attacks.

With our security parameters fully understood, we now turn to methods of gen-

erating cryptographically strong elliptic curves.

2 Generating Curves at Random

The main idea here is that we are going to somehow generate an elliptic curve at

random that will hopefully satisfy certain properties. The properties that we are

interested in are based on our security parameters defined above. Thus generating
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an elliptic curve for cryptographic purposes involves two stages:

1. generation process

2. verification process

We first have to generate the curve with some method, we then need to check that

the curve satisfies various properties as to ensure that our security parameters above

are met.

There are several ways to go about this process depending on the underlying field

chosen. We present two algorithms from [38], which will generate a curve over a

prime field and a binary field. In both algorithms || denotes concatenation.

Algorithm 5.1 Generating Random Elliptic Curves over Fp
Input: A prime p > 3 and an l-bit hash function H
Output: A seed S, and a, b ∈ Fp defining E : y2 = x3 + ax+ b.

1: Set t← dlog2 pe , s← b(t− 1)/lc , v ← t− sl.
2: Select an arbitrary bit string S of length g ≥ l.
3: Compute h = H(S), and let r0 be the bit string of length vobtained

by taking the v rightmost bits of h.
4: Let R0 be the bit string obtained by setting the leftmost bit of

r0 to 0.

5: Let z be the integer whose binary representation is S.
6: For i from 1 to s do:

1. Let si be the g-bit binary representation of the integer (z + i)
mod 2g

2. Compute Ri = H(Si)

7: Let R = R0||R1|| . . . ||Rs

8: Let r be the the integer whose binary representation is R.
9: If r = 0 or 4r + 27 ≡ 0 mod p then go to step 2.
10: Select arbitrary a, b ∈ Fp not bot zero, such that rb2 ≡ a3 mod p.
11: Return (S, a, b)

The condition in step 9 of this algorithm ensures that we do not generate a singular

elliptic curve.
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Generating elliptic curves over F2m are equally if not more important, since opera-

tion in F2m can be performed very efficiently. In fact the original algorithm presented

in [38] is an algorithm for an arbitrary, but sufficiently, large integer for cryptographic

purposes. Instead we modify the algorithm to eliminate any possibility of applying

the GHS or Gaudry’s attack to such a curve, by taking m to be a prime greater than

160.

Algorithm 5.2 Generating Random Elliptic Curves over F2p

Input: A prime number p > 160, and an l-bit hash function.

Output: A seed S, and a, b ∈ F2p defining E : y2 + xy = x3 + ax2 + b.

1: Set s← b(m− 1)/lc , v ← m− sl.
2: Select an arbitrary bit string S of length g ≥ l.
3: Compute h = H(S), and let b0 be the bit string of length vobtained

by taking the v rightmost bits of h.
4: Let z be the integer whose binary representation is S.
5: For i from 1 to s do:

1. Let si be the g-bit binary representation of the integer (z + i)
mod 2g

2. Compute bi = H(si)

6: Let b = b0||b1|| . . . ||bs
7: If b = 0 then go to step 2.
8: Select arbitrary a ∈ F2p.

9: Return (S, a, b)

As a part of this process, at least from the point of view of a person who receives an

elliptic curve that was supposedly generated at random, we should have a verification

process to test that the curve was indeed generated at random. This step is essential

to avoid some attacks, which are not necessarily mathematical on the ECDLP, but

could be deployed in practical situations. It could be possible to act as an oracle and

feed someone an elliptic curve for which the adversary knows a solution to the ECDLP.
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Without checking to see if the curve was generated at random anyone employing that

curve for cryptographic purposes would be using an insecure curve, and the adversary

could recover any information that he or she wishes. Algorithms to check, in both

cases, that the curves have been indeed generated at random can be found in [38].

Note that we also require a random number generator for each of these algo-

rithms. For Algorithm 5.1 we need to generate a large prime number suitable for

cryptographic purposes, larger than 2160, and in step 10 we need to select uniformly

at random a, b ∈ Fp. The same is also true for Algorithm 5.2, we need to generate a

prime p > 160 and a ∈ F2p .

Suppose now that we have generated a curve E(Fp) or E(F2p). We need to check

that this randomly generated curve now fits in with our security parameters. Suppose

that we are dealing with a curve defined over Fp, the case where E is defined over

F2p is entirely similar, except that different algorithms will be employed to deal with

the characteristic 2 situation. The first thing to do would be to calculate #E(Fp)31.

If #E(Fp) is equal to p, p+ 1 or divisible by small primes, then we reject the curve.

Otherwise we continue along with our check and ensure that #E(Fp) - pk − 1 for

1 ≤ k ≤ 20, as to avoid the MOV and the Frey-Rück attacks. Once all these checks

are performed and assuming that the curve E(Fp) has passed all checks, including

verified as being generated at random, then the elliptic curve has satisfied our security

parameters and is cryptographically strong.

31Or we can simply obtain an estimate using the Hasse-Weil Theorem and only fully count the
points on E once it has passed all other checks.
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Notice also here that these checks could be easily paralleled on several processors

to yield a quicker generation time. Since each check is independent of the others the

parallelization process is trivial. As mentioned, #E(Fp) could first be estimated until

all other checks have been passed. Once this happens we could then subject E(Fp)

to a full point counting algorithm. This version of the parallelized check system

would then be governed by the time it would take to run the fastest point counting

algorithms32.

3 The Method of Complex Multiplication(CM)

The method of Complex Multiplication requires a few results about elliptic curves

over C, and some results about class field theory. We introduce only necessary topics

to understand this method of generating elliptic curves. A greater exposition of

elliptic curves over the complex numbers can be found in [2], [38], [78] and [87].

In Chapter III we talked about isogenies from elliptic curves E1 to E2. We could

have also talked about the set of isogenies on an elliptic curve E to itself. These maps

are commonly known as endomorphisms ; the set of endomorphisms on E along with

the zero map form a ring which we will denote End(E). There are three possibilities

when it comes to the structure of End(E):

1. End(E) = Z: although this does not occur over finite fields,

2. End(E) is an order in an imaginary quadratic field; which we explain below,

3. End(E) is the maximal order in a quaternion algebra; a case we do not concern
ourselves with.

32This author would be interested to see if these point counting algorithms could be parallelized
to speed up this process. I currently do not know of any point counting algorithms that run in
parallel for elliptic curves.
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A proof that End(E) has these possible structures can be found in [77]. However

it can be easily seen that End(E) contains Z. Since the multiplication by n map is

an isogeny of E to itself it is therefore an endomorphism of degree n2 [5]. Thus we

trivially have Z ⊆ End(E). We now take a closer look at the structure of End(E) in

the second case.

Definition 5.1 Let E(C) be an elliptic curve. E is said to have Complex Multipli-

cation if End(E) is strictly larger then Z. If End(E) is larger then Z, then it is an

order in an imaginary quadratic field.

We explain this last sentence a little further. Suppose that d > 0 is a square free

integer. Let

K = Q(
√
−d) = {a+ b

√
−d | a, b ∈ Q}.

Then K is an imaginary quadratic field. We define the largest subring of K that is

also a finitely generated abelian group as

OK =


Z[1+

√
−d

2
], if d ≡ 3 mod 4

Z[
√
−d], if d ≡ 1, 2 mod 4

An order in an imaginary quadratic field is a ring R such that Z ⊂ R ⊂ OK . Notice

that R is finitely generated as an abelian group and has the form of R = Z + Zfδ

where f > 0 and δ is one of the forms above [87]. f is called the conductor of R and

is the index of R in OK . The discriminant of R is

D =


−f 2d, if d ≡ 3 mod 4

−4f 2d, if d ≡ 1, 2 mod 4.
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The last concept that we need is an essential tool used in the method of Complex

Multiplication.

The minimal polynomial of j(E), is the Hilbert class polynomial33

Hd(X) =

hd∏
r=1

(X − j(Ar)),

where j(Ar) is the j-invariant of the elliptic curves corresponding to the represen-

tatives Ar in the class group OK , and hd is the order of the ideal class group in

OK .

To generate curves using the CM method we first select an order N suitable for

cryptographic purposes, we then construct an elliptic curve with that order. This

method is very efficient provided that the finite field order q and the elliptic curve

order N = q+ 1− t are chosen so that the field Q(
√
t2 − 4q) has small class number

[38].

Given a Hilbert class polynomial, we can reduce it modulo primes, l, which corre-

spond to the product of principal primes in OK [2] which can be factored. We then

obtain a jl-invariant corresponding to this which results in an elliptic curve El defined

over Fp. It is this curve El, or one of its quadratic twists34 we will use for our curve.

Recall that for any given element j an elliptic curve with j-invariant, j 6= 0, 123 is

isomorphic to

Ej : y2 = x3 − 27j

4(j − 123)
x+

27j

4(j − 123)
.

Hence once we know that value of jl we can construct El quite easily.

33See [2] for more details concerning Hilbert Class polynomials
34A quadratic twist Ẽ of an elliptic curve E is a curve isomorphic to E over a field extension

which depends on the equation for E. See [2, 71] for more details of these forms.
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The following algorithm to generate an elliptic curve that has Complex Multipli-

cation is given below. The algorithm is from [2]. Here Ẽj denotes a quadratic twist

of Ej.

Algorithm 5.3 Generating Elliptic Curves via CM

INPUT: A squarefree integer d 6= 1, 3 parameters ε and δ, Hilbert class

polynomial Hd(X) the desired size of p and properties Pr.

OUTPUT: A prime p of the desired size, and elliptic

curve E/Fp whose group order satisfies property Pr.

1: repeat

2: repeat chose p prime of desired size

3: until εp = x2 + dy2 with x, y ∈ Z
4: n1 ← p+ 1− 2x/δ and n2 ← p+ 1 + 2x/δ
5: until n1 or n2 satisfies property Pr
6: compute a root j of Hd(X)
7: compute Ej/Fp from 3 and its twist Ẽj/Fp
8: while true do

9: take P ∈ Ej/Fp uniformly at random and compute Q← [n1]P
10: if Q = O and [n2]P 6= O then return p, Ej
11: else if Q 6= O then return p, Ẽj

The properties Pr in the above algorithm are the properties that we need to

achieve our security parameters defined at the beginning of this chapter. The largest

time-consuming step in this algorithm is to compute a root of the Hilbert class poly-

nomial, but this only needs to be done once. A quick modification of this algorithm

can be made at the outset: we can set p = (x2+dy2)
ε

. This ensures that p will split in

OK [2].
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4 Random Curves versus The CM Method

Both methods each have their advantages. The CM method generates a curve with a

given order, remarkably fast. In fact a CM curve over a 160-bit field can be generated

in about one minute [38], which is much faster than generating a curve at random and

running it through the required security parameter tests. However there are some

who believe that it would be best to use a curve that has been generated at random.

The thought is that there could be possible attacks that exploit the fact that a CM

curve has a small class number [5]. As of yet no such attack has been developed but

there are those who feel that a small class number could be exploited to be used for

a future attack.

As a result we recommend that a random curve be used for cryptographic pur-

poses. Not only does it remove the doubt about a possible small number class attack,

but the security parameter check could easily be paralleled. In the end all checks can

be easily performed. The overall running time to then ensure that a curve would

be cryptographically strong would clearly be equal to the time taken to compute

#E(Fq), which is terribly important since determining #E(Fq) explicitly makes it

possible to avoid three different attacks.
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6 Conclusions and Future Work

In this document we analyzed the various techniques that are known to attack elliptic

curve cryptosystems whose security is based around the ECDLP.

With the analysis of these attacks completed we have looked at the generation

of what we called cryptographically strong elliptic curves. We have refrained from

using the term secure, simply because we do not know if there will be an attack

developed in the future that will make these curves unsuitable for use. As a result

we now required binary elliptic curves to be generated over F2p for primes p > 160,

instead of F2m for m > 160. This, as discussed above, eliminates the possibility of

applying the GHS attack, and will also avoid the possibility of applying the Index

Calculus attack by Gaudry. Of course, to avoid all other possible specialized attacks

the security checks outlined in the previous chapter must be implemented.

Of all these attacks, several of them can be applied in special case scenarios based

on certain properties of either the underlying curve or the underlying field. All of these

attacks can easily be avoided when building an elliptic curve cryptosystem as we have

shown above. As a result only the general purpose attacks will always apply, and so

if one were to attack an elliptic curve cryptosystem at random the best attack would

be to use Pollard’s ρ or λ method; both of which have expected exponential running

133



times and hence are infeasible given today’s technology. This suggests that elliptic

curve cryptosystems are superior to currently deployed public key cryptosystems since

not only do they offer a greater level of security when the underlying parameters are

chosen correctly, but they offer a greater advantage due to factors mentioned in the

outset of this document, including shorter key sizes, faster generation of systems,

smaller space requirements and efficient implementation techniques.

Future Work

I believe more work should be done with the techniques of Weil Descent and the

GHS attack. In this document we were able to show that there is no reason why we

could not choose something else to intersect the abelian variety that results in this

procedure with something other then hyperplanes in standard position. However, my

belief is that the resulting equation could have degree that is too large, resulting in

a curve, possibly hyperelliptic, with too large a genus to apply the index calculus

algorithm in solving the HCDLP.

With Diem’s new result in hand, it would be interesting to see if one could classify

curves so that one would know what to expect as a result of the applying Weil

Descent - a plane curve, a hyperelliptic curve, or something else? It would also be

interesting to see if one could classify what types of curves result in a low genus

curve after Weil Descent is applied. Results on these subjects could lead to larger

classifications of weak curves resulting in a modification process in what curves are

used in cryptography.

Combining the above ideas could lead to a larger classification of curves that could
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be vulnerable to the GHS attack. If it is indeed possible to intersect the abelian

variety with something other than hyperplanes in standard position, we could then

apply the results of Diem in attempting to solve the ECDLP.

A second issue that should be examined in greater detail is the idea about a

parallelized point counting algorithm. In this thesis we saw that point counting

techniques were quite important when it came to generating cryptographically strong

elliptic curves. Both methods involve computing #E(Fq), thus a method to increase

the speed at which the group order can be determined very desirable. If we examine

Schoof’s algorithm again, we can see that it could in fact be trivially parallelized.

Recall that we created a list of primes up to a certain bound, at which point we

calculated the number of points in E[l] for various primes l less than the prescribed

bound. Using the CRT the total number of points of #E(Fq) is then calculated.

A trivial parallelization of the algorithm would be to send each prime to a single

processor so that a single processor compute E[l] for a give prime l, then send the

result to a central processor that can then use the CRT to reassemble #E(Fq) when

all processors have finished. The expected time on this would then be the time taken

to compute the largest subgroup E[l′] for some l′ in our list of prime less than the

prescribed bound. Combining this result with the parallelized version of generating

curves at random could result in an overall speedup which could be comparable to

generating curves using the CM method. More work is needed in this area.
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[69] René Schoof. Elliptic curves over finite fields and the computation of square

roots mod p. Math. Comp., 44(170):483–494, 1985.
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Appendix A

In this appendix we include description of the syntax used in our algorithms that

were programed in Pari/GP. The standard source for these commands is [85].

1. ellpow(Ep, P, i) - computes multiples of the point P defined on the curve Ep

2. elladd(Ep, P, R) - adds points P and R on a given elliptic curve Ep

3. ellinit(∗) - initializes an elliptic curve defined over a given field. For exam-

ple, Ep=ellinit([Mod(a,p),Mod(b,p),Mod(c,p),Mod(d,p),Mod(e,p)]) ini-

tializes Ep over Fp for a give prime p. The coefficients places are defined to be

a1, . . . , a6 as in the definition of an elliptic curve in equation (3.1).

4. Mod, ceil, sqrt are all standard function in the Pari library and are the

calls for modular arithmetic, the ceiling function and the square root function

respectively.

5. vector(n,expression) - produces a row vector of length n with the desired

expression. So in the algorithm for Pollard’s Rho, va and vb are row vector of

length m where each entry is a random number in the range [0, n− 1].
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Appendix B

The following table is the set T which we originally omitted from the example of the

Pohlig-Hellman attack.

j j([3]P) j j([3]P) j j([3]P) j j([3]P) j j([3]P) j j([3]P)
0 O 1 (460, 25) 2 (631, 182) 3 (325, 326) 4 (213, 106) 5 (425, 144)
6 (392, 319) 7 (670, 460) 8 (404, 91) 9 (635, 361) 10 (242, 221) 11 (422, 363)
12 (663, 494) 13 (617, 604) 14 (284, 505) 15 (541, 392) 16 (168, 508) 17 (591, 204)
18 (80, 368) 19 (290, 673) 20 (421, 410) 21 (567, 681) 22 (548, 262) 23 (704, 331)
24 (436, 453) 25 (161, 275) 26 (133, 221) 27 (306, 52) 28 (475, 57) 29 (41, 54)
30 (288, 586) 31 (647, 146) 32 (212, 643) 33 (210, 129) 34 (374, 14) 35 (636, 521)
36 (344, 498) 37 (195, 475) 38 (147, 678) 39 (120, 281) 40 (482, 313) 41 (192, 542)
42 (514, 106) 43 (646, 415) 44 (602, 605) 45 (463, 702) 46 (711, 613) 47 (140, 421)
48 (224, 366) 49 (56, 159) 50 (676, 68) 51 (315, 147) 52 (294, 594) 53 (393, 486)
54 (119, 54) 55 (581, 310) 56 (14, 152) 57 (366, 290) 58 (400, 173) 58 (501, 172)
59 (273, 663) 60 (540, 544) 61 (624, 385) 62 (627, 608) 63 (305, 430) 64 (198, 79)
65 (515, 387) 66 (1, 290) 67 (87, 369) 68 (340, 672) 69 (322, 633) 70 (570, 543)
71 (62, 372) 72 (558, 270) 73 (606, 329) 74 (178, 247) 75 (453, 612) 76 (323, 196)
77 (671, 569) 78 (22, 542) 79 (701, 399) 80 (47, 422) 81 (698, 545) 82 (559, 665)
83 (447, 611) 84 (474, 53) 85 (508, 598) 86 (121, 292) 87 (699, 615) 88 (513, 145)
89 (293, 638) 90 (630, 190) 91 (260, 296) 92 (241, 293) 93 (561, 312) 94 (649, 520)
95 (0, 495) 96 (626, 551) 97 (588, 453) 98 (48, 364) 99 (221, 712) 100 (185, 436)
101 (494, 167) 102 (387, 153) 103 (316, 540) 104 (669, 338) 105 (312, 90) 106 (599, 517)
107 (280, 219) 108 (352, 290) 109 (638, 718) 110 (414, 453) 111 (603, 524) 112 (505, 542)
113 (665, 336) 114 (677, 463) 115 (63, 276) 116 (63, 443) 117 (677, 256) 118 (665, 383)
119 (505, 177) 120 (603, 195) 121 (414, 266) 122 (638, 1) 123 (352, 429) 124 (280, 500)
125 (599, 202) 126 (312, 629) 127 (669, 381) 128 (316, 179) 129 (387, 566) 130 (494, 552)
131 (185, 283) 132 (221, 7) 134 (48, 355) 135 (588, 266) 136 (626, 168) 137 (0, 224)
138 (649, 199) 139 (561, 407) 140 (241, 426) 141 (260, 423) 142 (630, 529) 143 (293, 81)
144 (513, 574) 145 (699, 104) 146 (121, 427) 147 (508, 121) 148 (474, 666) 149 (447, 108)
150 (559, 54) 151 (698, 174) 152 (47, 297) 153 (701, 320) 154 (22, 177) 155 (671, 150)
156 (323, 523) 157 (453, 107) 158 (178, 472) 159 (606, 390) 160 (558, 449) 161 (62, 347)
162 (570, 176) 163 (322, 86) 164 (340, 47) 165 (87, 350) 166 (1, 429) 167 (515, 332)
168 (198, 640) 169 (305, 289) 170 (627, 111) 171 (624, 334) 172 (540, 175) 173 (273, 56)
174 (501, 547) 175 (400, 546) 176 (366, 429) 177 (14, 567) 178 (581, 409) 179 (119, 665)
180 (393, 233) 181 (294, 125) 182 (315, 572) 183 (676, 651) 184 (56, 560) 185 (224, 353)
186 (140, 298) 187 (711, 106) 188 (463, 17) 189 (602, 114) 190 (646, 304) 191 (514, 613)
192 (192, 177) 193 (482, 406) 194 (120, 438) 195 (147, 41) 196 (195, 244) 197 (344, 221)
198 (636, 198) 199 (374, 705) 200 (210, 590) 201 (212, 76) 202 (647, 573) 203 (288, 133)
204 (41, 665) 205 (475, 662) 206 (306, 667) 207 (133, 498) 208 (161, 444) 209 (436, 266)
210 (704, 388) 211 (548, 457) 212 (567, 38) 213 (421, 309) 214 (290, 46) 215 (80, 351)
216 (591, 515) 217 (168, 211) 218 (541, 327) 219 (284, 214) 220 (617, 115) 221 (663, 225)
222 (422, 356)

Table 6.1: Omitted Set T for the Pohlig-Hellman Attack
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