
Minix File System

CSC����
Dr� John C�S� Lui

Abstract

Introduction to Minix File System

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui

Supplementary Note� The Minix FS

Overview of Minix FS

� Minix FS is just a big C program runs in a user
space�

� user processes send messages to the FS telling what
they want done� The FS does the work and sends
back a reply� It can be used as a network �le server�

� Overview of Minix FS �� messages	
� FS layout	 ��
i�nodes	 �� block cache	 �� bit maps	 � directories
and path names	 �� the process table	 �� pipe �les	
�� integration�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

Messages

� The FS accepts
� types of messages requesting work�

Message Input parameters Reply value
type

ACCESS File name� access mode status
CHDIR Name of new working directory status
CHMOD File name� new mode status
CHOWN File name� new owner� new group status

CHROOT Name of new root directory status
CLOSE File descriptor of �le to close status
CREAT Name of �le to be created� mode File descriptor

DUP File descriptor 	for DUP
� two of them� New File descriptor
FSTAT Name of �le whose status is wanted� bu�er status
IOCTL File descriptor� function code� argument status
LINK Name of �le to link to� name of link status

LSEEK File descriptor� o�set� whence new position
MKNOD Name of dir or special �le� mode� address status
MOUNT Special �le� where to mount it� ro�ag status
OPEN Name of �le to open� read�write �ag File descriptor

PIPE 	None� File descriptor
READ File descriptor� bu�er� how many bytes bytes read
STAT File name� status bu�er status
STIME Pointer to current time status

SYNC 	None� Always OK
TIME Pointer to place where current time goes Real time
TIMES Pointer to bu�er for process and child times status

UMASK Complement of mode mask Always OK
UMOUNT Name of special �le to unmount status
UNLINK Name of �le to unlink status
UTIME File name� �le times Always OK

WRITE File descriptor� bu�er� how many bytes bytes written
REVIVE Process to revive 	no reply�
UNPAUSE Process to check 	see text�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui

� FS has a main loop that waits for a message to
arrive	 message type will be extracted and used as an
index into a table containing pointers to procedures
within the FS that handle the request� When done	
return status�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

FS layout

� The Minix FS is a logical	 self�contained entity with
i�nodes	 directories and data blocks� Example of a
��K layout with �
� i�nodes and �K block size�
Figure �����

~ ~
~ ~

Boot
block

Super
block I-nodes one disk block

I-node
bit map

Zone
bit map Data

Figure 5.30: Minix FS Layout

� Boot block� When a computer is turned on	 the
hardware reads the boot block into memory and
jump to it�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

� super�block contains information about �le system
layout� Figure �����

Numer of nodes

Number of zones

Number of i-node bit map blocks

Number of zone bit map blocks

First data zone

Log 2(zone size/block size)

Maximum file size

Magic number

Pointer to i-node bit map block

Super-block’s device number

I-node of mounted file system

I-node mounted on

Time of last update

Read-only flag/Dirty flag

...
.

Pointer to zone bit map block

...
.

Present
on disk
and in
memory

Present
in memory
but not
on disk

11011011
10110111
00110110
11101111

...
...

.

01011011
10110111
00110110
11101110

...
...

.

I-node bit map

Zone bit map

Figure 5.31: The MINIX super-block

� Given block size and number of i�nodes� It is easy
to compute the size of i�node bit map and number
of blocks for i�nodes� For example	 with �K block
size	 each block of bit maps can indicate status of
���� i�nodes� If i�nodes are of �
�bytes	 each block
holds �
 i�nodes	 therefore	 �
� i�nodes need � disk
blocks�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

� disk storage is allocated in units �zones� of �	
	�	�
or in general	 �n blocks�

� mapping from zone to block or vice versa can be
done by algorithm� For example	 with � blocks per
zone	 to �nd zone containing block �
�	 just shift
�
� right by � bits�

� when Minix is booted	 the super�block for the root
device is read into a table called super�blocks table�
New parameters are then derived and stored in this
table like whether it has been mounted read�only	
modi�ed status �eld�

� To enforce a known structure	 the utility program
mkfs is provided to build a �le system�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

Bit Maps

� i�nodes and zone bit maps keep track of status�

� upon boot up	 super�block and bit maps for the
root device are loaded into memory�

� to remove a �le	 based on the i�node number	 we
will know which pointer in in the super�block to go
to and access the i�node bit map and then clear the
corresponding bit�

� to create a �le	 sequentially search through the bit
map blocks until it �nds a free i�node� This i�node
is then allocated for the new �le� If no available
i�node	 return ��

� Rational for zone is to improve performance so that
disk blocks that belong to the same �le are located
on the same cylinder as much as possible�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

I�nodes

� in Minix	 i�node is a �
�bytes structure� Figure
���
�

Mode

Uid

File Size

Time of last
modification

Link

Zone 0 number

Zone 1 number

Zone 5 number

Zone 6 number

Indirect

Double Indirect

Zone 2 number

Zone 3 number

Gid

Zone 4 number

32
 b

yt
es

File type and RWX bit

Identifies the user who owns the file

Number of bytes in the file

In seconds, since Jan. 1, 1970

Directories listing this i-node/owner’s group

Zone numbers for
the first 7 data
sones in the file

Only used for files larger than 7 zones

Figure 5.32: The MINIX i-node

� mode indicates the type of �le �regular	 directory	
block special	 character special or pipe�	 protection
bits�

� It is di�erent from traditional unix �� number of
time �eld	
� link and gid sizes	 �� fewer disk block
pointers�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

� When a �le is opened	 its i�node is located and
brought into the inode table in memory� It remains
there until the �le is closed�

� the inode table has several parameters which is not
in disk	 �� i�node�s device number so system knows
where to write back the i�node	
� a counter for each
i�node to indicate the number of process opening
the �le� When the counter is zero	 the i�node is
removed from the table and written to disk if it has
been modi�ed�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

Block Cache

� block cache is used to improve FS performance�

� Each block bu�er is implemented as a node with
�� pointers
� counters	 �� �ags	 �� room for a disk
block�

� bu�ers are chained together in a double�link list
with most recently used �MRU� to least recently
used �LRU�� Figure �����

Hash table Rear (MRU) Front (LRU)

Figure 5.33: The linked lists used by the block cache

� How can we quickly accessed a given block� Take
advantage of hashing technique by hashing the low�
order n bits of the block number� All blocks that

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

have the same lower�order bits are linked together
on a single�linked list�

� When the FS needs a block	 it calls a procedure
get block� Base on hashing and searches the
appropriate list� If the block is found	 a counter
in the block�s header is incremented and a pointer
is returned� If block is not found	 the LRU list is
searched to �nd a block to evict �assuming there is a
�xed block cache�� If the block at front has counter
value of zero� That block is chosen for eviction	
otherwise	 next block is inspected �what happen if
you cannot �nd any block to evict��� When a block
is chosen for eviction	 the system checks has the
block been modi�ed �the modi�cation �ag is stored
in the header�� For modi�ed block	 write it out to
disk� At this point	 system can bring in another
block by sending a message to the disk task� FS
is suspended until the block arrives	 then it returns
the block pointer to the caller�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� Another procedure put block is to decide where
to put the block� Blocks that are not likely to be
needed again �ex� double indirect blocks� go to the
front of the list� Blocks that are likely to be needed
go to the rear of the list� Data block that has been
modi�ed is not rewritten back to disk unless �� it
reaches the front of the list	
� a SYNC system
call is made� For all those operations	 remember to
chain back the hashed singled link list�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

Directories and Path

� as mentioned before	 when the system wants to
open a �le	 it is actually accessing an i�node�

� �le name look up is the same as we described
before� The important thing is to �nd the root
directory i�node	 which is located in the �xed
position of the disk�

� When user types in command
� mount �def�fd� �user
this implies to mount the �le system on top of �user�
Figure ����

Root file system
 /

/lib /bin /user

Unmounted FS
 /

/bal /jim /ast

After mounting
 /

/lib /bin /user

/ast/f1 /ast/f2

/user/bal /user/ast

/user/ast/f2

...
..

(a) (b) (c)

Figure 5.34: (a) Root file system. (b) An unmounted file system.
 (c) The result of mounting the file system of (b) on /user

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� What does it really mean for mounting� That is	
during �le name lookup	 how does the system know
when and where to switch�

� OS has to �� set a �ag in ��user� to indicate
a successful mount	
� load the super�block
and i�node of the newly mounted �le system
into super�block table and i�node table �this
is accomplished by MOUNT call�	 �� set the
i�node�of�the�mounted��le�system to point to the
root i�node of the newly mounted system	 �� set
the i�node�mounted�on to point to the i�node of
��user��

� to answer the previous question	 it is straight
forward�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

File Descriptors

� when a �le has been open	 a �le descriptor is
returned to user� This implies the OS has to
manage �le descriptor�

� FS maintains part of the process table within its
address space� There are � interesting �elds in
the process table	 �� pointer to the i�node of the
root directory	
� pointer to the current working
directory for that process	 �� is an array �indexed�
by the �le descriptor� It is used to locate the proper
�le when a �le descriptor is used by the process�
The interesting question is can we just put a pointer
of the �le�s i�node in the array�

� To answer that	 we �rst have to understand in Unix	
�les can be shared� For each �le	 there is a �
�bits
number indicates the �le position �so process know
where to read or write the next time�� where can

we put this number�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� If we put it as part of the i�node �eld	 then di�erent
processes might open the same �le and they might
have di�erent �le positions� So we CANNOT put
the �le position as part of the i�node�

� Then can we put the �le�position in the process
table� In this way	 each process can have di�erent
�le�position even they are accessing the same �le�
Problem during forking� So we cannot put the
�le�position in the process table�

� Solution� is to introduce a shared table	 �lp� Figure
�����

~~ ~~

Parent

Child

Process table

File position
i-node pointer

~~ ~~

~~ ~~

I-node table

Figure 5.35: How file positions are shared between a parent and a child

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� In this way	 parent�child processes can be shared
using the same �lp entry while di�erent processes
point to di�erent �lp entry for sharing same �le�
The �lp entry has a counter to check number of
processes using it� It can be deallocated when it
reaches zero�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

Pipes and special �les

� If process tries to read or write from a disk	 it is
certain that	 at worst	 it takes several disk access
to get the information� But when reading a pipe	
it is quite di�erent because the reader of the pipe
may have to wait for the other process to put data
in the pipe�

� when process tries to read or write from a pipe	
the FS can check the state of the pipe �rst to see
if the operation is possible� If yes	 proceed� Else	
FS records the parameters of the system call in the
process table for later restart of process and then
suspend the process�

� In suspending process	 FS just have to refrain from
sending a reply back to the calling process and then
the FS goes back to the main loop� Eventually	
other process will modify the state of the pipe so
the suspended process can proceed when the FS
service the process�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� For other special �les like terminals and other
character special �les� The i�node of this special
�le has two numbers	 the major and minor device
number� The major device number is to indicate
which class of device �e�g�	 RAM disk	 �oppy disk	
hard disk	 terminal�� It is also used to index into
a �le system table so the proper I�O driver can be
called� Minor device number is used to specify the
speci�c device	 for example	 you might have several
�oppy disk drive�

� Once we know the I�O driver task number	 the �le
system sends the task a message including �� minor
device number	
� operation to be performed	 ��
caller�s process number	 �� caller�s bu�er address	
�� number of bytes to be transferred�

� If the driver can carry out the work immediately	
it copies data from its internal bu�er to the user�s
bu�er space	 sends the FS a reply saying work is
done	 then the FS can reply back to the calling
process�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

� If driver is not able to carry out work	 it records the
message parameters in its internal tables	 reply to
the FS saying that the call could not be completed�
Then FS records the fact that the process is
suspended and waits for next message� Eventually
the driver can �nish the work	 it sends message back
to FS	 the FS can reply back to the calling process�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

READ system call

� n � read�fd	 bu�er	 nbytes�

� send read message to FS�

� FS decodes message and jumps to the appropriate
function�

� procedure extracts �le descriptor and then locate
the �lp entry and then the i�node for the �le to
read�

� request is then broken into pieces such that each
piece �ts within a block� For example	 if the �le
position is at �� and �K bytes heave requested�
Request is split into two parts	 for �� to ��
�	 and
��
� to �
��

� for each piece	 check to see if the relevant block is
in cache� If it is not	 FS picks the least recently used
bu�er not currently in used and claims it� Sending
a message to the disk task to rewrite if the block is

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

dirty� Then the disk task is asked to fetch the block
to be read�

� once a block is in cache	 the FS sends a message
to the system task asking it to copy the data to the
appropriate place in user�s bu�er�

� After the copy has been done	 the FS sends a reply
message to the user specifying how many bytes have
been copied�

� the library function read extracts the reply code
and returns it as the function value to the caller�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui

Minix header �les

� �le �fs�const�h� de�nes fs constants�

� NR BUFS �number of blocks in bu�er cache�	
NR BUF HASH �size of bu�er hash table�	
NR FDS �max �le descriptors per process�	
NR FILPS �maximum number of slots in �lp table�	
can be changed to tune the system�s performance�

� Also de�nes position like BOOT BLOCK and
SUPER BLOCK�

� buf�h de�nes the disk block bu�er cache� the
�b counts� holds the number of users of this bu�er
and �there are various pointers for LRU double link
list and hashed link�

� buf�h also de�ned the type of block when FS calls
the put block��� Some blocks have to be written
out to disk immediately �e�g�	 i�node block	 directory
block��

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

� �le�h contains the intermediate table to hold
current �le position	 i�node pointer	 how many �le
descriptors are currently pointing to this entry�

� fproc�h is the FS�s part of the process table� Again	
it has i�node pointers to working directory and root
directory as well as �lp pointer� It also has two
�elds fp suspended and fp revived to suspend and
revive a process�

� inode�h de�nes the i�node table� Remember	 when
a �le is opened	 its i�node is read into memory and
kept in the inode table� It has �eld �i dirt� �is it
dirty�	 �i pipe� �if inode is a pipe�	 �i mount� �set
if other �le system can be mounted on this inode	
�i seek� is for performance for pre�fetching� It is
set to inhibit read ahead�

� super�h de�nes the super block table� Note that
the second half of the super�block is derived once it
is in the memory�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

Block Management

� cache�c manages the block cache� It has six
procedures� Figure ����

get_block Fetch a block for reading or writing

put_block Return a block previously requested with get_block

alloc_zone Allocate a new zone (to make a file longer)

free_zone Release a zone (when a file is removed)

rw_block Transfer a block between disk and cache

invalidate Purge all the cache blocks for some device

Figure 5.36: Procedures used for block management

� when you need a data block	 use get block�� with
device an d block number� Bu�er chosen for eviction
is removed from hash chain and if it is dirty	 write
it out on disk�

� the procedure put block takes cares of putting the
newly returned block on the LRU list	 and in some
cases	 rewriting it back to the disk �e�g�	 directory
block��

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

� invalidate�	 is called when a disk is unmounted so
that all blocks in the cache belonging to that �le
system will be removed �as possible written out��

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

I�node management

� inode�c manages i�node table� It has the following
supporting procedures� Figure �����

get_inode Fetch an i-node into memory

put_inode Return an i-node that is no longer needed

alloc_inode Allocate a new i-node (for a new file)

wipe_inode Clear some fields in an i-node

free_inode Release an i-node (when a file is removed)

rw_inode Transfer an i-node between memory and disk

Figure 5.37: Procedures used for i-node management

dup_inode Indicate that someone else is using an i-node

� get inode�	 searches the inode table to see if
the inode is already present �we need both device
number and inode number specify a system inode��
If so	 increment the usage counter and returns a
pointer	 else	 called rw inode�	�

� inode is returned by calling put inode	 which
decrements the usage i cout� If the count is zero	
i�node is removed from i�node table� If it is dirty	
write it out to disk�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

� alloc inode�	 will allocate a free i�node on a given
device�

� free inode�		 corresponding i�node bit�map is set
to zero�

� dup inode�	 increment the usage count of the i�
node�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

Super�block management

� super�c contains procedures to manage super�block
table and bit maps� Figure �����

get_inode Fetch an i-node into memory

put_inode Return an i-node that is no longer needed

alloc_inode Allocate a new i-node (for a new file)

wipe_inode Clear some fields in an i-node

free_inode Release an i-node (when a file is removed)

rw_inode Transfer an i-node between memory and disk

Figure 5.37: Procedures used for i-node management

dup_inode Indicate that someone else is using an i-node

� load bit maps�	 loads all bit map blocks	 set up
super�block to point to them�

� unload bit maps�	 is called when the �le system is
unmounted and bit maps are copied back to disk�

� get super�	 is used to search the super�block table
for a speci�c device� For example	 when a �le

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui
�

system is mounted	 you need to check that it is not
already mounted�

� scale factor�	 looks up the zone�to�block
conversion factor� It is di�erent for each �le system�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

File descriptor management

� �ledes�c manages the �le descriptors and �lp table�

� get fd�	 looks for free �le descriptor and free �lp
slots�

� get �lp�	 looks up the �lp entry for a given �le
descriptor�

� �nd �lp�	 �nds a �lp slot that points to a given
inode� We need this function	 for example	 when a
process is writing on a broken pipe� It uses a brute
force search of the �lp table�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

FS main program

� FS is always in an in�nite loop�

� the call to get work�	 waits for the next request
message to arrive� It set global variable	 who �the
caller�s process table slot number� and fs call � the
number of system call to be carried out��

� Three �ags is set� fp points to the caller�s process
table slot	 super user tells whether the caller is the
super�user and dont reply is set to FALSE� Then
call the appropriate system call routine�

� When control comes back to the main loop� If
dont reply is set	 reply is inhibited �e�g	 process
has been blocked to read from an empty pipe��
Otherwise	 reply is sent�

� At the end of the loop	 try to see if the �le is being
read sequentially and to load the next block into
the cache before it is requested�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui �

� get work�	 checks to see if any previously blocked
procedures have now been revived� They have
HIGHER PRIORITY over new messages� If no
internal work to perform	 the FS call the kernel to
get a message�

� reply�	 is basically a reply back to a user process�

� fs init�	 is called for initialization before the FS
in�nite loop� It builds the block cache	 initializes
the super�block tables	 read in root i�node for the
root device	 load i�node and zone bit maps�

� table�c contains the pointer array used in the FS
main loop for determining which procedure handles
to call�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

Creating� opening� and closing �les

� creating a �le involves �� allocating and initializing
an i�node for the new �le	
� entering the new �le
in the proper directory	 �� setting up and returning
a �le descriptor for the new �le�

� �le creation is handled by procedure do creat�	�
It starts out by fetching the �le name	 makes sure
the �le descriptor and �lp table slots are available�
It these are o�k	 call new node�	 to allocate new
i�node� Then claims the �le descriptor and �lp
entry�

� MKNOD system call is handled by domknod� It is
similar to do create except that it creates the i�node
and makes a directory entry for it� If i�node already
exits	 the call terminates with an error�

� procedure new node�	 handles i�node allocation
and entering the pathname into the �le system�

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

After inode allocation	 make sure to write it back
to disk for consistency�

� do open�	 is to open a �le� It parses the given
�lename and make all necessary check �e�g�	 is it
readable� Then it loads in the �le inode into the
memory and �le descriptor is returned�

� closing a �le is performed by do close�	� If it is
a regular �le	 decrement the �lp counter� If it is
zero	 return the i�node by calling put inode�		 which
implies decrementing the the counter in the inode
table�

� reading and writing a �le is done by calling
do read�	 and do write�	� Both of these routines
call read write�	 with appropriate parameter�

� Inside readwrite�� routine	 there is a special code
for the memory manager to READ the entire FS into
memory� The logical structure is in Figure �����

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

do_read do_write

read_write

dev_io pipe_check rw_chunk

read_map get_block rw_user put_block

rw_block

dev_io

rw_dev

sendrec

Entry point

Main procedure for reading/writing

Read or Write one block
Special
files

Look up
disk address

User-FS
transfer

Return block
 to cache

Search the cache

List in dmap table

Sends message to the kernel

Figure 5.40: Some of the procedures involved in reading a file

� writing a �le is similar to reading one except
that writing requires allocating new disk block�
Procedure write map	 which is similar to read map	
instead looking up a physical block in the i�node
and its indirect blocks	 it enters new block in inode
or in the indirect blocks�

� pathname look up is done in �le path�c	 which

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

has several components� Note that pathnames may
be absolute or relative	 this can be detected by
examining the �rst component of the pathname
argument� For absolute address	 point to the root
i�node	 for relative address	 point to the working
directory inode� Figure ���
�

dev_io

dev_io dev_io

dev_io dev_io dev_io

dev_io dev_io dev_io

Convert path to i-node

Get final
directory

Process one component

Load
i-node

Look up
disk address

Find block
 in cache

Return block
 to cache

Figure 5.42: Some of the procedures used in looking up path names

� mounting and unmounting is handled in
�le mount�c by two routines	 do mount and
do unmount� Again	 there are many error checking
codes �e�g�	 checking if the FS to be mounted is a
block device or not��

CSC����� Introduction to Operating Systems� Prepared by Dr� John C�S� Lui ��

