Minix File System

CSC3150
Dr. John C.S. Lui

Abstract

Introduction to Minix File System

CS(C3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui

Supplementary Note: The Minix FS

Overview of Minix FS

e Minix FS is just a big C program runs in a user
space.

e user processes send messages to the FS telling what
they want done. The FS does the work and sends
back a reply. It can be used as a network file server!

e Overview of Minix FS 1) messages, 2) FS layout, 3)
i-nodes, 4) block cache, 5) bit maps, 6) directories
and path names, 7) the process table, 8) pipe files,
9) integration.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 1

Messages

e The FS accepts 29 types of messages requesting work.

Message Input parameters Reply value
type

ACCESS File name, access mode status

CHDIR Name of new working directory status
CHMOD File name, new mode status
CHOWN File name, new owner, new group status
CHROOT Name of new root directory status
CLOSE File descriptor of file to close status
CREAT Name of file to be created, mode File descriptor
DUP File descriptor (for DUP2, two of them) New File descriptor
FSTAT Name of file whose status is wanted, buffer status

IOCTL File descriptor, function code, argument status

LINK Name of file to link to, name of link status

LSEEK File descriptor, offset, whence new position
MKNOD Name of dir or special file, mode, address status
MOUNT Special file, where to mount it, ro-flag status

OPEN Name of file to open, read/write flag File descriptor
PIPE (None) File descriptor
READ File descriptor, buffer, how many bytes bytes read
STAT File name, status buffer status

STIME Pointer to current time status

SYNC (None) Always OK
TIME Pointer to place where current time goes Real time
TIMES Pointer to buffer for process and child times status
UMASK Complement of mode mask Always OK
UMOUNT Name of special file to unmount status
UNLINK Name of file to unlink status

UTIME File name, file times Always OK
WRITE File descriptor, buffer, how many bytes bytes written
REVIVE Process to revive (no reply)
UNPAUSE Process to check (see text)

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui

e FS has a main loop that waits for a message to
arrive, message type will be extracted and used as an
index into a table containing pointers to procedures
within the FS that handle the request. When done,
return status.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 3

FS layout

e The Minix FS is a logical, self-contained entity with
I-nodes, directories and data blocks. Example of a
360K layout with 127 i-nodes and 1K block size.
Figure 5.30.

Boot Super
block block [-nodes one disk block

\ 7 \

) J\
I-node Zone
bit map bit map

Data

Figure 5.30: Minix FS Layout

e Boot block. When a computer is turned on, the
hardware reads the boot block into memory and
jump to it.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 4

e super-block contains information about file system
layout. Figure 5.31.

Numer of nodes I-node bit map
Number of zones
Present Number of i-node bit map blocks
on disk Number of zone bit map blocks %ﬁéﬁi
andin First data zone 00110110
memory Log 2(zone size/block size) 111051110
Maximum file size
Magic number
Pointer to i-node bit map block 1 :
_ 4 Zone bit map
Pointer to zone bit map block — 11011011
: ——> 10110111
Present Super-block’ s device number [ggigzﬁg
1IN memor I-node of mounted file system
but not I-node mounted on
on disk \ Time of last update
Read-only flag/Dirty flag

Figure 5.31: The MINIX super-block

e Given block size and number of i-nodes. It is easy
to compute the size of i-node bit map and number
of blocks for i-nodes. For example, with 1K block
size, each block of bit maps can indicate status of
8191 i-nodes. If i-nodes are of 32-bytes, each block
holds 32 i-nodes, therefore, 127 i-nodes need 4 disk
blocks.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 5

disk storage is allocated in units (zones) of 1,2,4,8
or in general, 2™ blocks.

mapping from zone to block or vice versa can be
done by algorithm. For example, with 8 blocks per
zone, to find zone containing block 128, just shift
128 right by 3 bits.

when Minix is booted, the super-block for the root
device is read into a table called super-blocks table.
New parameters are then derived and stored in this
table like whether it has been mounted read-only,
modified status field.

To enforce a known structure, the utility program
mkfs is provided to build a file system.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 6

Bit Maps

I-nodes and zone bit maps keep track of status.

upon boot up, super-block and bit maps for the
root device are loaded into memory.

to remove a file, based on the i-node number, we
will know which pointer in in the super-block to go
to and access the i-node bit map and then clear the
corresponding bit.

to create a file, sequentially search through the bit
map blocks until it finds a free i-node. This i-node
Is then allocated for the new file. If no available
I-node, return 0.

Rational for zone is to improve performance so that
disk blocks that belong to the same file are located
on the same cylinder as much as possible.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 7

I-nodes

e in Minix, i-node is a 32-bytes structure. Figure
5.32.

Mode «— File type and RWX hit

Uid <«——— |dentifies the user who ownsthefile

FileSize <«—— Number of bytesin thefile

Time of last .

modification «— |n seconds, since Jan. 1, 1970
8 [Link Gid <« Directories listing this i-node/owner’ s group
2 [Zone 0 number
& [Zone 1 number

Zore 2 umber Zone numbers for

thefirst 7 data
Zone 3 number sonesin thefile

Zone 4 number
Zone 5 number
Zone 6 number
Indirect

Double Indirect

Only used for fileslarger than 7 zones

Figure 5.32: The MINIX i-node

e mode indicates the type of file (regular, directory,
block special, character special or pipe), protection
bits.

e It is different from traditional unix 1) number of
time field, 2) link and gid sizes, 3) fewer disk block

pointers.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 8

e \When a file is opened, its i-node is located and
brought into the inode table in memory. It remains
there until the file is closed.

e the inode table has several parameters which is not
in disk, 1) i-node’s device number so system knows
where to write back the i-node, 2) a counter for each
I-node to indicate the number of process opening
the file. When the counter is zero, the i-node is
removed from the table and written to disk if it has
been modified.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 9

Block Cache

e block cache is used to improve FS performance.

e Each block buffer is implemented as a node with

1) pointers 2) counters, 3) flags, 4) room for a disk
block.

e buffers are chained together in a double-link list
with most recently used (MRU) to least recently
used (LRU). Figure 5.33.

Hash table RearI (MRU) Frorit (LRU)
/\ A

Figure 5.33: The linked lists used by the block cache

e How can we quickly accessed a given block? Take
advantage of hashing technique by hashing the low-
order n bits of the block number. All blocks that

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 10

have the same lower-order bits are linked together
on a single-linked list.

e \When the FS needs a block, it calls a procedure
get_block. Base on hashing and searches the
appropriate list. If the block is found, a counter
in the block’'s header is incremented and a pointer
Is returned. If block is not found, the LRU list is
searched to find a block to evict (assuming there is a
fixed block cache). If the block at front has counter
value of zero. That block is chosen for eviction,
otherwise, next block is inspected (what happen if
you cannot find any block to evict?). When a block
is chosen for eviction, the system checks has the
block been modified (the modification flag is stored
in the header). For modified block, write it out to
disk. At this point, system can bring in another
block by sending a message to the disk task. FS
is suspended until the block arrives, then it returns
the block pointer to the caller.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 11

e Another procedure put_block is to decide where
to put the block. Blocks that are not likely to be
needed again (ex: double indirect blocks) go to the
front of the list. Blocks that are likely to be needed
go to the rear of the list. Data block that has been
modified is not rewritten back to disk unless 1) it
reaches the front of the list, 2) a SYNC system
call is made. For all those operations, remember to
chain back the hashed singled link list.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 12

Directories and Path

e as mentioned before, when the system wants to

open a file, it is actually accessing an i-node.

e file name look up is the same as we described
before. The important thing is to find the root
directory i-node, which is located in the fixed

position of the disk.

e \When user types in command
% mount /def/fd1 /user

this implies to mount the file system on top of /user.

Figure 5.34

Root file system Unmounted FS After mounting
/ / /

Nlib i

Juser/bal

Juser/ast/f2
@ (b) (0

Figure 5.34: (&) Root file system. (b) An unmounted file system.
(c) Theresult of mounting the file system of (b) on /user

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui

13

e \What does it really mean for mounting? That is,
during file name lookup, how does the system know

when and where to switch?

e OS has to 1) set a flag in " /user”

a successful mount, 2) load the
and i-node of the newly mounted
into super-block table and i-node

is accomplished by MOUNT call),

to indicate
super-block
file system
table (this
3) set the

I-node-of-the-mounted-file-system to point to the
root i-node of the newly mounted system, 4) set
the i-node-mounted-on to point to the i-node of

" Juser” .

e to answer the previous question, it is straight

forward.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 14

File Descriptors

e when a file has been open, a file descriptor is
returned to user. This implies the OS has to
manage file descriptor.

e FS maintains part of the process table within its
address space. There are 3 interesting fields in
the process table, 1) pointer to the i-node of the
root directory, 2) pointer to the current working
directory for that process, 3) is an array "indexed”
by the file descriptor. It is used to locate the proper
file when a file descriptor is used by the process.
The interesting question is can we just put a pointer
of the file's i-node in the array?

e To answer that, we first have to understand in Unix,
files can be shared. For each file, there is a 32-bits
number indicates the file position (so process know
where to read or write the next time). where can
we put this number?

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 15

e If we put it as part of the i-node field, then different
processes might open the same file and they might
have different file positions. So we CANNOT put
the file position as part of the i-node.

e Then can we put the file-position in the process
table? In this way, each process can have different
file-position even they are accessing the same file.
Problem during forking! So we cannot put the
file-position in the process table.

e Solution: is to introduce a shared table, filp. Figure
5.35.

Process table I-node table
Parent > FHleposition |

Figure 5.35: How file positions are shared between a parent and a child

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 16

e |n this way, parent-child processes can be shared
using the same filp entry while different processes
point to different filp entry for sharing same file.
The filp entry has a counter to check number of

processes using it. It can be deallocated when it
reaches zero.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 17

Pipes and special files

If process tries to read or write from a disk, it is
certain that, at worst, it takes several disk access
to get the information. But when reading a pipe,
it is quite different because the reader of the pipe
may have to wait for the other process to put data
in the pipe.

when process tries to read or write from a pipe,
the FS can check the state of the pipe first to see
if the operation is possible. If yes, proceed. Else,
FS records the parameters of the system call in the
process table for later restart of process and then
suspend the process.

In suspending process, FS just have to refrain from

sending a reply back to the calling process and then
the FS goes back to the main loop. Eventually,
other process will modify the state of the pipe so
the suspended process can proceed when the FS
service the process.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 18

e For other special files like terminals and other
character special files. The i-node of this special
file has two numbers, the major and minor device
number. The major device number is to indicate
which class of device (e.g., RAM disk, floppy disk,
hard disk, terminal). It is also used to index into
a file system table so the proper |/O driver can be
called. Minor device number is used to specify the
specific device, for example, you might have several
floppy disk drive.

e Once we know the 1/O driver task number, the file
system sends the task a message including 1) minor
device number, 2) operation to be performed, 3)
caller’s process number, 4) caller's buffer address,
5) number of bytes to be transferred.

e If the driver can carry out the work immediately,
it copies data from its internal buffer to the user's
buffer space, sends the FS a reply saying work is
done, then the FS can reply back to the calling
process.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 19

e |f driver is not able to carry out work, it records the
message parameters in its internal tables, reply to
the FS saying that the call could not be completed.
Then FS records the fact that the process is
suspended and waits for next message. Eventually
the driver can finish the work, it sends message back
to FS, the FS can reply back to the calling process.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 20

READ system call
% n = read(fd, buffer, nbytes)

send read message to FS.

FS decodes message and jumps to the appropriate
function.

procedure extracts file descriptor and then locate
the filp entry and then the i-node for the file to
read.

request is then broken into pieces such that each
piece fits within a block. For example, if the file
position is at 600 and 1K bytes heave requested.
Request is split into two parts, for 600 to 1023, and
1024 to 1623.

for each piece, check to see if the relevant block is
in cache. If it is not, FS picks the least recently used
buffer not currently in used and claims it. Sending
a message to the disk task to rewrite if the block is

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 21

dirty. Then the disk task is asked to fetch the block
to be read.

e once a block is in cache, the FS sends a message
to the system task asking it to copy the data to the
appropriate place in user’s buffer.

e After the copy has been done, the FS sends a reply
message to the user specifying how many bytes have
been copied.

e the library function read extracts the reply code
and returns it as the function value to the caller.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 22

Minix header files

o file "fs/const.h” defines fs constants.

e NR_BUFS (number of blocks in buffer cache),
NR_BUF_HASH (size of buffer hash table),
NR_FDS (max file descriptors per process),
NR_FILPS (maximum number of slots in filp table),
can be changed to tune the system’s performance.

e Also defines position like BOOT_BLOCK and
SUPER_BLOCK.

e buf.h defines the disk block buffer cache. the
"b_counts” holds the number of users of this buffer
and "there are various pointers for LRU double link

list and hashed link.

e buf.h also defined the type of block when FS calls
the put_block(). Some blocks have to be written
out to disk immediately (e.g., i-node block, directory
block).

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 23

e file.h contains the intermediate table to hold
current file position, i-node pointer, how many file
descriptors are currently pointing to this entry.

e fproc.his the FS's part of the process table. Again,
it has i-node pointers to working directory and root
directory as well as filp pointer. It also has two
fields fp_suspended and fp_revived to suspend and
revive a process.

e inode.h defines the i-node table. Remember, when
a file is opened, its i-node is read into memory and
kept in the inode table. It has field "i_dirt" (is it
dirty), "i_pipe” (if inode is a pipe), "i_mount” (set
if other file system can be mounted on this inode,
"i_seek” is for performance for pre-fetching. It is
set to inhibit read ahead.

e super.h defines the super block table. Note that
the second half of the super-block is derived once it
is in the memory.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 24

Block Management

e cache.c manages the block cache. It has six
procedures. Figure 5.36.

get_block Fetch ablock for reading or writing

put_block Return a block previously requested with get_block
aloc_zone Allocate anew zone (to make afile longer)
free_zone Release a zone (when afile is removed)

rw_block Transfer a block between disk and cache
invalidate Purge al the cache blocks for some device

Figure 5.36: Procedures used for block management

e when you need a data block, use get_block() with
device an d block number. Buffer chosen for eviction
is removed from hash chain and if it is dirty, write
It out on disk.

e the procedure put_block takes cares of putting the
newly returned block on the LRU list, and in some

cases, rewriting it back to the disk (e.g., directory
block).

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 25

e invalidate() is called when a disk is unmounted so
that all blocks in the cache belonging to that file
system will be removed (as possible written out).

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 26

I-node management

e node.c manages i-node table. It has the following
supporting procedures. Figure 5.37.

get_inode Fetch an i-node into memory

put_inode Return an i-node that is no longer needed

aloc_inode Allocate anew i-node (for anew file)

wipe_inode Clear somefieldsin an i-node

free_inode Release an i-node (when afile is removed)

rw_inode Transfer an i-node between memory and disk

dup_inode Indicate that someone else is using an i-node
Figure 5.37: Procedures used for i-node management

e get_inode() searches the inode table to see if
the inode is already present (we need both device
number and inode number specify a system inode).
If so, increment the usage counter and returns a
pointer, else, called rw_inode().

e inode is returned by calling put_inode, which

decrements the

usage i_cout. If the count is zero,

I-node is removed from i-node table. If it is dirty,
write it out to disk.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 27

e alloc_inode() will allocate a free i-node on a given
device.

e free_inode(), corresponding i-node bit-map is set
to zero.

e dup_inode() increment the usage count of the i-
node.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 28

Super-block management

e super.c contains procedures to manage super-block
table and bit maps. Figure 5.38.

get_inode Fetch an i-node into memory

put_inode Return an i-node that is no longer needed
aloc _inode Allocate anew i-node (for a new file)
wipe_inode Clear somefieldsin ani-node

free_inode Release an i-node (when afileis removed)
rw_inode Transfer an i-node between memory and disk
dup_inode Indicate that someone elseis using an i-node

Figure 5.37: Procedures used for i-node management

e Joad_bit_maps() loads all bit map blocks, set up
super-block to point to them.

e unload_bit_maps() is called when the file system is
unmounted and bit maps are copied back to disk.

e get_super() is used to search the super-block table
for a specific device. For example, when a file

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 29

system is mounted, you need to check that it is not
already mounted.

e scale_factor() looks up the zone-to-block
conversion factor. It is different for each file system.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 30

File descriptor management

filedes.c manages the file descriptors and filp table.

get_fd() looks for free file descriptor and free filp
slots.

get_filp() looks up the filp entry for a given file
descriptor.

find_filp() finds a filp slot that points to a given
inode. We need this function, for example, when a
process is writing on a broken pipe. It uses a brute
force search of the filp table.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 31

FS main program

FS is always in an infinite loop.

the call to get_work() waits for the next request
message to arrive. It set global variable, who (the
caller’s process table slot number) and fs_call (the
number of system call to be carried out).

Three flags is set: fp points to the caller’s process
table slot, super_user tells whether the caller is the
super-user and dont_reply is set to FALSE. Then
call the appropriate system call routine.

When control comes back to the main loop. If
dont_reply is set, reply is inhibited (e.g, process
has been blocked to read from an empty pipe).
Otherwise, reply is sent.

At the end of the loop, try to see if the file is being
read sequentially and to load the next block into
the cache before it is requested.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 32

get_work() checks to see if any previously blocked
procedures have now been revived. They have
HIGHER PRIORITY over new messages. If no
internal work to perform, the FS call the kernel to
get a message.

reply() is basically a reply back to a user process.

fs_init() is called for initialization before the FS
infinite loop. It builds the block cache, initializes
the super-block tables, read in root i-node for the
root device, load i-node and zone bit maps.

table.c contains the pointer array used in the FS
main loop for determining which procedure handles
to call.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 33

Creating, opening, and closing files

creating a file involves 1) allocating and initializing
an i-node for the new file, 2) entering the new file
in the proper directory, 3) setting up and returning
a file descriptor for the new file.

file creation is handled by procedure do_creat().
It starts out by fetching the file name, makes sure
the file descriptor and filp table slots are available.
It these are o.k, call new_node() to allocate new
I-node. Then claims the file descriptor and filp
entry.

MKNOD system call is handled by domknod. It is
similar to do_create except that it creates the i-node
and makes a directory entry for it. If i-node already
exits, the call terminates with an error.

procedure new_node() handles i-node allocation
and entering the pathname into the file system.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 34

After inode allocation, make sure to write it back
to disk for consistency.

do_open() is to open a file. It parses the given
filename and make all necessary check (e.g., is it
readable) Then it loads in the file inode into the
memory and file descriptor is returned.

closing a file is performed by do_close(). If it is
a regular file, decrement the filp counter. If it is
zero, return the i-node by calling put_inode(), which
implies decrementing the the counter in the inode
table.

reading and writing a file is done by calling
do_read() and do_write(). Both of these routines
call read_write() with appropriate parameter.

Inside readwrite() routine, there is a special code
for the memory manager to READ the entire FS into
memory. The logical structure is in Figure 5.40.

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 35

Entry point

/ \
do_read do_write
\ /
read_write | Main procedure for reading/writing
fsif’;c'aj dev_io pipe_check rw_chunk Read or Write one block
4/4/ \i \
read_map get_block rw_user put_block
Look up ! User-FS Return block
disk address transfer to cache
rw_block
l Search the cache
dev_io
\/
rw_dev Listin dmap table
'
sendrec Sends message to the kernel

Figure 5.40: Some of the proceduresinvolved in reading afile

e writing a file is similar to reading one except
that writing requires allocating new disk block.
Procedure write_map, which is similar to read_map,
instead looking up a physical block in the i-node
and its indirect blocks, it enters new block in inode
or in the indirect blocks.

e pathname look up is done in file path.c, which

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 36

has several components. Note that pathnames may
be absolute or relative, this can be detected by
examining the first component of the pathname
argument. For absolute address, point to the root
I-node, for relative address, point to the working
directory inode. Figure 5.42.

dev_io Convert path to i-node
: Get final ; Process one component
dev_io directory dev_io p
y l / \
dev_io dev_io dev_io Load
i-node
\/
dev_io dev_io dev_io
Look up Find block Return block
disk address in cache to cache

Figure 5.42: Some of the procedures used in looking up path names

e mounting and unmounting is handled in
fille mount.c by two routines, do_mount and
do_unmount. Again, there are many error checking
codes (e.g., checking if the FS to be mounted is a
block device or not).

CSC3150: Introduction to Operating Systems. Prepared by Dr. John C.S. Lui 37

